openfoam/applications/solvers/multiphase/multiphaseEulerFoam/multiphaseSystem/multiphaseSystem.C
Mark Olesen 2f86cdc712 STYLE: more consistent use of dimensioned Zero
- when constructing dimensioned fields that are to be zero-initialized,
  it is preferrable to use a form such as

      dimensionedScalar(dims, Zero)
      dimensionedVector(dims, Zero)

  rather than

      dimensionedScalar("0", dims, 0)
      dimensionedVector("zero", dims, vector::zero)

  This reduces clutter and also avoids any suggestion that the name of
  the dimensioned quantity has any influence on the field's name.

  An even shorter version is possible. Eg,

      dimensionedScalar(dims)

  but reduces the clarity of meaning.

- NB: UniformDimensionedField is an exception to these style changes
  since it does use the name of the dimensioned type (instead of the
  regIOobject).
2018-03-16 10:24:03 +01:00

961 lines
24 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "multiphaseSystem.H"
#include "alphaContactAngleFvPatchScalarField.H"
#include "fixedValueFvsPatchFields.H"
#include "Time.H"
#include "subCycle.H"
#include "MULES.H"
#include "surfaceInterpolate.H"
#include "fvcGrad.H"
#include "fvcSnGrad.H"
#include "fvcDiv.H"
#include "fvcFlux.H"
#include "fvcAverage.H"
#include "unitConversion.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::multiphaseSystem::calcAlphas()
{
scalar level = 0.0;
alphas_ == 0.0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
alphas_ += level*iter();
level += 1.0;
}
}
void Foam::multiphaseSystem::solveAlphas()
{
PtrList<surfaceScalarField> alphaPhiCorrs(phases_.size());
int phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phaseModel& phase = iter();
volScalarField& alpha1 = phase;
alphaPhiCorrs.set
(
phasei,
new surfaceScalarField
(
"phi" + alpha1.name() + "Corr",
fvc::flux
(
phi_,
phase,
"div(phi," + alpha1.name() + ')'
)
)
);
surfaceScalarField& alphaPhiCorr = alphaPhiCorrs[phasei];
forAllIter(PtrDictionary<phaseModel>, phases_, iter2)
{
phaseModel& phase2 = iter2();
volScalarField& alpha2 = phase2;
if (&phase2 == &phase) continue;
surfaceScalarField phir(phase.phi() - phase2.phi());
scalarCoeffSymmTable::const_iterator cAlpha
(
cAlphas_.find(interfacePair(phase, phase2))
);
if (cAlpha != cAlphas_.end())
{
surfaceScalarField phic
(
(mag(phi_) + mag(phir))/mesh_.magSf()
);
phir += min(cAlpha()*phic, max(phic))*nHatf(phase, phase2);
}
word phirScheme
(
"div(phir," + alpha2.name() + ',' + alpha1.name() + ')'
);
alphaPhiCorr += fvc::flux
(
-fvc::flux(-phir, phase2, phirScheme),
phase,
phirScheme
);
}
phase.correctInflowOutflow(alphaPhiCorr);
MULES::limit
(
1.0/mesh_.time().deltaT().value(),
geometricOneField(),
phase,
phi_,
alphaPhiCorr,
zeroField(),
zeroField(),
1,
0,
true
);
phasei++;
}
MULES::limitSum(alphaPhiCorrs);
volScalarField sumAlpha
(
IOobject
(
"sumAlpha",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimless, Zero)
);
phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phaseModel& phase = iter();
surfaceScalarField& alphaPhi = alphaPhiCorrs[phasei];
alphaPhi += upwind<scalar>(mesh_, phi_).flux(phase);
phase.correctInflowOutflow(alphaPhi);
MULES::explicitSolve
(
geometricOneField(),
phase,
alphaPhi,
zeroField(),
zeroField()
);
phase.alphaPhi() = alphaPhi;
Info<< phase.name() << " volume fraction, min, max = "
<< phase.weightedAverage(mesh_.V()).value()
<< ' ' << min(phase).value()
<< ' ' << max(phase).value()
<< endl;
sumAlpha += phase;
phasei++;
}
Info<< "Phase-sum volume fraction, min, max = "
<< sumAlpha.weightedAverage(mesh_.V()).value()
<< ' ' << min(sumAlpha).value()
<< ' ' << max(sumAlpha).value()
<< endl;
// Correct the sum of the phase-fractions to avoid 'drift'
volScalarField sumCorr(1.0 - sumAlpha);
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phaseModel& phase = iter();
volScalarField& alpha = phase;
alpha += alpha*sumCorr;
}
calcAlphas();
}
Foam::tmp<Foam::surfaceVectorField> Foam::multiphaseSystem::nHatfv
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const
{
/*
// Cell gradient of alpha
volVectorField gradAlpha =
alpha2*fvc::grad(alpha1) - alpha1*fvc::grad(alpha2);
// Interpolated face-gradient of alpha
surfaceVectorField gradAlphaf = fvc::interpolate(gradAlpha);
*/
surfaceVectorField gradAlphaf
(
fvc::interpolate(alpha2)*fvc::interpolate(fvc::grad(alpha1))
- fvc::interpolate(alpha1)*fvc::interpolate(fvc::grad(alpha2))
);
// Face unit interface normal
return gradAlphaf/(mag(gradAlphaf) + deltaN_);
}
Foam::tmp<Foam::surfaceScalarField> Foam::multiphaseSystem::nHatf
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const
{
// Face unit interface normal flux
return nHatfv(alpha1, alpha2) & mesh_.Sf();
}
// Correction for the boundary condition on the unit normal nHat on
// walls to produce the correct contact angle.
// The dynamic contact angle is calculated from the component of the
// velocity on the direction of the interface, parallel to the wall.
void Foam::multiphaseSystem::correctContactAngle
(
const phaseModel& phase1,
const phaseModel& phase2,
surfaceVectorField::Boundary& nHatb
) const
{
const volScalarField::Boundary& gbf
= phase1.boundaryField();
const fvBoundaryMesh& boundary = mesh_.boundary();
forAll(boundary, patchi)
{
if (isA<alphaContactAngleFvPatchScalarField>(gbf[patchi]))
{
const alphaContactAngleFvPatchScalarField& acap =
refCast<const alphaContactAngleFvPatchScalarField>(gbf[patchi]);
vectorField& nHatPatch = nHatb[patchi];
vectorField AfHatPatch
(
mesh_.Sf().boundaryField()[patchi]
/mesh_.magSf().boundaryField()[patchi]
);
alphaContactAngleFvPatchScalarField::thetaPropsTable::
const_iterator tp =
acap.thetaProps().find(interfacePair(phase1, phase2));
if (tp == acap.thetaProps().end())
{
FatalErrorInFunction
<< "Cannot find interface " << interfacePair(phase1, phase2)
<< "\n in table of theta properties for patch "
<< acap.patch().name()
<< exit(FatalError);
}
bool matched = (tp.key().first() == phase1.name());
const scalar theta0 = degToRad(tp().theta0(matched));
scalarField theta(boundary[patchi].size(), theta0);
scalar uTheta = tp().uTheta();
// Calculate the dynamic contact angle if required
if (uTheta > SMALL)
{
const scalar thetaA = degToRad(tp().thetaA(matched));
const scalar thetaR = degToRad(tp().thetaR(matched));
// Calculated the component of the velocity parallel to the wall
vectorField Uwall
(
phase1.U().boundaryField()[patchi].patchInternalField()
- phase1.U().boundaryField()[patchi]
);
Uwall -= (AfHatPatch & Uwall)*AfHatPatch;
// Find the direction of the interface parallel to the wall
vectorField nWall
(
nHatPatch - (AfHatPatch & nHatPatch)*AfHatPatch
);
// Normalise nWall
nWall /= (mag(nWall) + SMALL);
// Calculate Uwall resolved normal to the interface parallel to
// the interface
scalarField uwall(nWall & Uwall);
theta += (thetaA - thetaR)*tanh(uwall/uTheta);
}
// Reset nHatPatch to correspond to the contact angle
scalarField a12(nHatPatch & AfHatPatch);
scalarField b1(cos(theta));
scalarField b2(nHatPatch.size());
forAll(b2, facei)
{
b2[facei] = cos(acos(a12[facei]) - theta[facei]);
}
scalarField det(1.0 - a12*a12);
scalarField a((b1 - a12*b2)/det);
scalarField b((b2 - a12*b1)/det);
nHatPatch = a*AfHatPatch + b*nHatPatch;
nHatPatch /= (mag(nHatPatch) + deltaN_.value());
}
}
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::K
(
const phaseModel& phase1,
const phaseModel& phase2
) const
{
tmp<surfaceVectorField> tnHatfv = nHatfv(phase1, phase2);
correctContactAngle(phase1, phase2, tnHatfv.ref().boundaryFieldRef());
// Simple expression for curvature
return -fvc::div(tnHatfv & mesh_.Sf());
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::multiphaseSystem::multiphaseSystem
(
const volVectorField& U,
const surfaceScalarField& phi
)
:
IOdictionary
(
IOobject
(
"transportProperties",
U.time().constant(),
U.db(),
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
),
phases_(lookup("phases"), phaseModel::iNew(U.mesh())),
mesh_(U.mesh()),
phi_(phi),
alphas_
(
IOobject
(
"alphas",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh_,
dimensionedScalar(dimless, Zero)
),
sigmas_(lookup("sigmas")),
dimSigma_(1, 0, -2, 0, 0),
cAlphas_(lookup("interfaceCompression")),
Cvms_(lookup("virtualMass")),
deltaN_
(
"deltaN",
1e-8/pow(average(mesh_.V()), 1.0/3.0)
)
{
calcAlphas();
alphas_.write();
interfaceDictTable dragModelsDict(lookup("drag"));
forAllConstIter(interfaceDictTable, dragModelsDict, iter)
{
dragModels_.insert
(
iter.key(),
dragModel::New
(
iter(),
*phases_.lookup(iter.key().first()),
*phases_.lookup(iter.key().second())
).ptr()
);
}
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter1)
{
const phaseModel& phase1 = iter1();
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter2)
{
const phaseModel& phase2 = iter2();
if (&phase2 != &phase1)
{
scalarCoeffSymmTable::const_iterator sigma
(
sigmas_.find(interfacePair(phase1, phase2))
);
if (sigma != sigmas_.end())
{
scalarCoeffSymmTable::const_iterator cAlpha
(
cAlphas_.find(interfacePair(phase1, phase2))
);
if (cAlpha == cAlphas_.end())
{
WarningInFunction
<< "Compression coefficient not specified for "
"phase pair ("
<< phase1.name() << ' ' << phase2.name()
<< ") for which a surface tension "
"coefficient is specified"
<< endl;
}
}
}
}
}
}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::rho() const
{
PtrDictionary<phaseModel>::const_iterator iter = phases_.begin();
tmp<volScalarField> trho = iter()*iter().rho();
volScalarField& rho = trho.ref();
for (++iter; iter != phases_.end(); ++iter)
{
rho += iter()*iter().rho();
}
return trho;
}
Foam::tmp<Foam::scalarField>
Foam::multiphaseSystem::rho(const label patchi) const
{
PtrDictionary<phaseModel>::const_iterator iter = phases_.begin();
tmp<scalarField> trho = iter().boundaryField()[patchi]*iter().rho().value();
scalarField& rho = trho.ref();
for (++iter; iter != phases_.end(); ++iter)
{
rho += iter().boundaryField()[patchi]*iter().rho().value();
}
return trho;
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::nu() const
{
PtrDictionary<phaseModel>::const_iterator iter = phases_.begin();
tmp<volScalarField> tmu = iter()*(iter().rho()*iter().nu());
volScalarField& mu = tmu.ref();
for (++iter; iter != phases_.end(); ++iter)
{
mu += iter()*(iter().rho()*iter().nu());
}
return tmu/rho();
}
Foam::tmp<Foam::scalarField>
Foam::multiphaseSystem::nu(const label patchi) const
{
PtrDictionary<phaseModel>::const_iterator iter = phases_.begin();
tmp<scalarField> tmu =
iter().boundaryField()[patchi]
*(iter().rho().value()*iter().nu().value());
scalarField& mu = tmu.ref();
for (++iter; iter != phases_.end(); ++iter)
{
mu +=
iter().boundaryField()[patchi]
*(iter().rho().value()*iter().nu().value());
}
return tmu/rho(patchi);
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::Cvm
(
const phaseModel& phase
) const
{
tmp<volScalarField> tCvm
(
new volScalarField
(
IOobject
(
"Cvm",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimensionSet(1, -3, 0, 0, 0), Zero)
)
);
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter)
{
const phaseModel& phase2 = iter();
if (&phase2 != &phase)
{
scalarCoeffTable::const_iterator Cvm
(
Cvms_.find(interfacePair(phase, phase2))
);
if (Cvm != Cvms_.end())
{
tCvm.ref() += Cvm()*phase2.rho()*phase2;
}
else
{
Cvm = Cvms_.find(interfacePair(phase2, phase));
if (Cvm != Cvms_.end())
{
tCvm.ref() += Cvm()*phase.rho()*phase2;
}
}
}
}
return tCvm;
}
Foam::tmp<Foam::volVectorField> Foam::multiphaseSystem::Svm
(
const phaseModel& phase
) const
{
tmp<volVectorField> tSvm
(
new volVectorField
(
IOobject
(
"Svm",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedVector(dimensionSet(1, -2, -2, 0, 0), Zero)
)
);
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter)
{
const phaseModel& phase2 = iter();
if (&phase2 != &phase)
{
scalarCoeffTable::const_iterator Cvm
(
Cvms_.find(interfacePair(phase, phase2))
);
if (Cvm != Cvms_.end())
{
tSvm.ref() += Cvm()*phase2.rho()*phase2*phase2.DDtU();
}
else
{
Cvm = Cvms_.find(interfacePair(phase2, phase));
if (Cvm != Cvms_.end())
{
tSvm.ref() += Cvm()*phase.rho()*phase2*phase2.DDtU();
}
}
}
}
volVectorField::Boundary& SvmBf =
tSvm.ref().boundaryFieldRef();
// Remove virtual mass at fixed-flux boundaries
forAll(phase.phi().boundaryField(), patchi)
{
if
(
isA<fixedValueFvsPatchScalarField>
(
phase.phi().boundaryField()[patchi]
)
)
{
SvmBf[patchi] = Zero;
}
}
return tSvm;
}
Foam::autoPtr<Foam::multiphaseSystem::dragCoeffFields>
Foam::multiphaseSystem::dragCoeffs() const
{
autoPtr<dragCoeffFields> dragCoeffsPtr(new dragCoeffFields);
forAllConstIter(dragModelTable, dragModels_, iter)
{
const dragModel& dm = *iter();
volScalarField* Kptr =
(
max
(
//fvc::average(dm.phase1()*dm.phase2()),
//fvc::average(dm.phase1())*fvc::average(dm.phase2()),
dm.phase1()*dm.phase2(),
dm.residualPhaseFraction()
)
*dm.K
(
max
(
mag(dm.phase1().U() - dm.phase2().U()),
dm.residualSlip()
)
)
).ptr();
volScalarField::Boundary& Kbf = Kptr->boundaryFieldRef();
// Remove drag at fixed-flux boundaries
forAll(dm.phase1().phi().boundaryField(), patchi)
{
if
(
isA<fixedValueFvsPatchScalarField>
(
dm.phase1().phi().boundaryField()[patchi]
)
)
{
Kbf[patchi] = 0.0;
}
}
dragCoeffsPtr().insert(iter.key(), Kptr);
}
return dragCoeffsPtr;
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::dragCoeff
(
const phaseModel& phase,
const dragCoeffFields& dragCoeffs
) const
{
tmp<volScalarField> tdragCoeff
(
new volScalarField
(
IOobject
(
"dragCoeff",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimensionSet(1, -3, -1, 0, 0), Zero)
)
);
dragModelTable::const_iterator dmIter = dragModels_.begin();
dragCoeffFields::const_iterator dcIter = dragCoeffs.begin();
for
(
;
dmIter != dragModels_.end() && dcIter != dragCoeffs.end();
++dmIter, ++dcIter
)
{
if
(
&phase == &dmIter()->phase1()
|| &phase == &dmIter()->phase2()
)
{
tdragCoeff.ref() += *dcIter();
}
}
return tdragCoeff;
}
Foam::tmp<Foam::surfaceScalarField> Foam::multiphaseSystem::surfaceTension
(
const phaseModel& phase1
) const
{
tmp<surfaceScalarField> tSurfaceTension
(
new surfaceScalarField
(
IOobject
(
"surfaceTension",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimensionSet(1, -2, -2, 0, 0), Zero)
)
);
tSurfaceTension.ref().setOriented();
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter)
{
const phaseModel& phase2 = iter();
if (&phase2 != &phase1)
{
scalarCoeffSymmTable::const_iterator sigma
(
sigmas_.find(interfacePair(phase1, phase2))
);
if (sigma != sigmas_.end())
{
tSurfaceTension.ref() +=
dimensionedScalar("sigma", dimSigma_, sigma())
*fvc::interpolate(K(phase1, phase2))*
(
fvc::interpolate(phase2)*fvc::snGrad(phase1)
- fvc::interpolate(phase1)*fvc::snGrad(phase2)
);
}
}
}
return tSurfaceTension;
}
Foam::tmp<Foam::volScalarField>
Foam::multiphaseSystem::nearInterface() const
{
tmp<volScalarField> tnearInt
(
new volScalarField
(
IOobject
(
"nearInterface",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimless, Zero)
)
);
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter)
{
tnearInt.ref() =
max(tnearInt(), pos0(iter() - 0.01)*pos0(0.99 - iter()));
}
return tnearInt;
}
void Foam::multiphaseSystem::solve()
{
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
iter().correct();
}
const Time& runTime = mesh_.time();
const dictionary& alphaControls = mesh_.solverDict("alpha");
label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));
if (nAlphaSubCycles > 1)
{
dimensionedScalar totalDeltaT = runTime.deltaT();
PtrList<volScalarField> alpha0s(phases_.size());
PtrList<surfaceScalarField> alphaPhiSums(phases_.size());
int phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phaseModel& phase = iter();
volScalarField& alpha = phase;
alpha0s.set
(
phasei,
new volScalarField(alpha.oldTime())
);
alphaPhiSums.set
(
phasei,
new surfaceScalarField
(
IOobject
(
"phiSum" + alpha.name(),
runTime.timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimensionSet(0, 3, -1, 0, 0), Zero)
)
);
phasei++;
}
for
(
subCycleTime alphaSubCycle
(
const_cast<Time&>(runTime),
nAlphaSubCycles
);
!(++alphaSubCycle).end();
)
{
solveAlphas();
int phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
alphaPhiSums[phasei] += iter().alphaPhi()/nAlphaSubCycles;
phasei++;
}
}
phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phaseModel& phase = iter();
volScalarField& alpha = phase;
phase.alphaPhi() = alphaPhiSums[phasei];
// Correct the time index of the field
// to correspond to the global time
alpha.timeIndex() = runTime.timeIndex();
// Reset the old-time field value
alpha.oldTime() = alpha0s[phasei];
alpha.oldTime().timeIndex() = runTime.timeIndex();
phasei++;
}
}
else
{
solveAlphas();
}
}
bool Foam::multiphaseSystem::read()
{
if (regIOobject::read())
{
bool readOK = true;
PtrList<entry> phaseData(lookup("phases"));
label phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
readOK &= iter().read(phaseData[phasei++].dict());
}
lookup("sigmas") >> sigmas_;
lookup("interfaceCompression") >> cAlphas_;
lookup("virtualMass") >> Cvms_;
return readOK;
}
else
{
return false;
}
}
// ************************************************************************* //