openfoam/applications/solvers/multiphase/twoPhaseEulerFoam/createFields.H

257 lines
5.1 KiB
C

Info<< "Reading transportProperties\n" << endl;
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
autoPtr<phaseModel> phase1 = phaseModel::New
(
mesh,
transportProperties,
"1"
);
autoPtr<phaseModel> phase2 = phaseModel::New
(
mesh,
transportProperties,
"2"
);
volVectorField& U1 = phase1->U();
surfaceScalarField& phi1 = phase1->phi();
const dimensionedScalar& rho1 = phase1->rho();
const dimensionedScalar& nu1 = phase1->nu();
volVectorField& U2 = phase2->U();
surfaceScalarField& phi2 = phase2->phi();
const dimensionedScalar& rho2 = phase2->rho();
const dimensionedScalar& nu2 = phase2->nu();
Info<< "Reading field alpha1\n" << endl;
volScalarField alpha1
(
IOobject
(
"alpha1",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volScalarField alpha2
(
IOobject
(
"alpha2",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
scalar(1) - alpha1
//,alpha1.boundaryField().types()
);
Info<< "Reading field p\n" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
alpha1*U1 + alpha2*U2
);
dimensionedScalar Cvm
(
"Cvm",
dimless,
transportProperties.lookup("Cvm")
);
dimensionedScalar Cl
(
"Cl",
dimless,
transportProperties.lookup("Cl")
);
dimensionedScalar Ct
(
"Ct",
dimless,
transportProperties.lookup("Ct")
);
surfaceScalarField phi
(
IOobject
(
"phi",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
fvc::interpolate(alpha1)*phi1 + fvc::interpolate(alpha2)*phi2
);
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh
),
alpha1*rho1 + alpha2*rho2
);
#include "createRASTurbulence.H"
Info<< "Calculating field DDtU1 and DDtU2\n" << endl;
volVectorField DDtU1
(
fvc::ddt(U1)
+ fvc::div(phi1, U1)
- fvc::div(phi1)*U1
);
volVectorField DDtU2
(
fvc::ddt(U2)
+ fvc::div(phi2, U2)
- fvc::div(phi2)*U2
);
Info<< "Calculating field g.h\n" << endl;
volScalarField gh("gh", g & mesh.C());
IOdictionary interfacialProperties
(
IOobject
(
"interfacialProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
autoPtr<dragModel> drag1 = dragModel::New
(
interfacialProperties,
alpha1,
phase1,
phase2
);
autoPtr<dragModel> drag2 = dragModel::New
(
interfacialProperties,
alpha2,
phase2,
phase1
);
word dragPhase("blended");
if (interfacialProperties.found("dragPhase"))
{
dragPhase = word(interfacialProperties.lookup("dragPhase"));
bool validDrag =
dragPhase == "1" || dragPhase == "2" || dragPhase == "blended";
if (!validDrag)
{
FatalErrorIn(args.executable())
<< "invalid dragPhase " << dragPhase
<< exit(FatalError);
}
}
dimensionedScalar residualSlip
(
dimensionedScalar::lookupOrDefault
(
"residualSlip",
interfacialProperties,
0,
dimVelocity
)
);
Info << "dragPhase is " << dragPhase << endl;
kineticTheoryModel kineticTheory
(
phase1,
U2,
alpha1,
drag1
);
surfaceScalarField rAU1f
(
IOobject
(
"rAU1f",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(0, 0, 1, 0, 0), 0.0)
);
surfaceScalarField ppMagf
(
IOobject
(
"ppMagf",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(0, 2, -1, 0, 0), 0.0)
);
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, mesh.solutionDict().subDict("PIMPLE"), pRefCell, pRefValue);