openfoam/applications/solvers/multiphase/multiphaseEulerFoam/multiphaseSystem/multiphaseSystem.C
Mark Olesen 48d654cf19 ENH: avoid memory leaks for HashPtrTable, PtrMap insertion (issue #749)
- disallow insert() of raw pointers, since a failed insertion
  (ie, entry already existed) results in an unmanaged pointer.

  Either insert using an autoPtr, or set() with raw pointers or autoPtr.

- IOobjectList::add() now takes an autoPtr instead of an object reference

- IOobjectList::remove() now returns an autoPtr instead of a raw pointer
2018-05-17 09:56:36 +01:00

961 lines
24 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "multiphaseSystem.H"
#include "alphaContactAngleFvPatchScalarField.H"
#include "fixedValueFvsPatchFields.H"
#include "Time.H"
#include "subCycle.H"
#include "MULES.H"
#include "surfaceInterpolate.H"
#include "fvcGrad.H"
#include "fvcSnGrad.H"
#include "fvcDiv.H"
#include "fvcFlux.H"
#include "fvcAverage.H"
#include "unitConversion.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::multiphaseSystem::calcAlphas()
{
scalar level = 0.0;
alphas_ == 0.0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
alphas_ += level*iter();
level += 1.0;
}
}
void Foam::multiphaseSystem::solveAlphas()
{
PtrList<surfaceScalarField> alphaPhiCorrs(phases_.size());
int phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phaseModel& phase = iter();
volScalarField& alpha1 = phase;
alphaPhiCorrs.set
(
phasei,
new surfaceScalarField
(
"phi" + alpha1.name() + "Corr",
fvc::flux
(
phi_,
phase,
"div(phi," + alpha1.name() + ')'
)
)
);
surfaceScalarField& alphaPhiCorr = alphaPhiCorrs[phasei];
forAllIter(PtrDictionary<phaseModel>, phases_, iter2)
{
phaseModel& phase2 = iter2();
volScalarField& alpha2 = phase2;
if (&phase2 == &phase) continue;
surfaceScalarField phir(phase.phi() - phase2.phi());
scalarCoeffSymmTable::const_iterator cAlpha
(
cAlphas_.find(interfacePair(phase, phase2))
);
if (cAlpha != cAlphas_.end())
{
surfaceScalarField phic
(
(mag(phi_) + mag(phir))/mesh_.magSf()
);
phir += min(cAlpha()*phic, max(phic))*nHatf(phase, phase2);
}
word phirScheme
(
"div(phir," + alpha2.name() + ',' + alpha1.name() + ')'
);
alphaPhiCorr += fvc::flux
(
-fvc::flux(-phir, phase2, phirScheme),
phase,
phirScheme
);
}
phase.correctInflowOutflow(alphaPhiCorr);
MULES::limit
(
1.0/mesh_.time().deltaT().value(),
geometricOneField(),
phase,
phi_,
alphaPhiCorr,
zeroField(),
zeroField(),
1,
0,
true
);
phasei++;
}
MULES::limitSum(alphaPhiCorrs);
volScalarField sumAlpha
(
IOobject
(
"sumAlpha",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimless, Zero)
);
phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phaseModel& phase = iter();
surfaceScalarField& alphaPhi = alphaPhiCorrs[phasei];
alphaPhi += upwind<scalar>(mesh_, phi_).flux(phase);
phase.correctInflowOutflow(alphaPhi);
MULES::explicitSolve
(
geometricOneField(),
phase,
alphaPhi,
zeroField(),
zeroField()
);
phase.alphaPhi() = alphaPhi;
Info<< phase.name() << " volume fraction, min, max = "
<< phase.weightedAverage(mesh_.V()).value()
<< ' ' << min(phase).value()
<< ' ' << max(phase).value()
<< endl;
sumAlpha += phase;
phasei++;
}
Info<< "Phase-sum volume fraction, min, max = "
<< sumAlpha.weightedAverage(mesh_.V()).value()
<< ' ' << min(sumAlpha).value()
<< ' ' << max(sumAlpha).value()
<< endl;
// Correct the sum of the phase-fractions to avoid 'drift'
volScalarField sumCorr(1.0 - sumAlpha);
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phaseModel& phase = iter();
volScalarField& alpha = phase;
alpha += alpha*sumCorr;
}
calcAlphas();
}
Foam::tmp<Foam::surfaceVectorField> Foam::multiphaseSystem::nHatfv
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const
{
/*
// Cell gradient of alpha
volVectorField gradAlpha =
alpha2*fvc::grad(alpha1) - alpha1*fvc::grad(alpha2);
// Interpolated face-gradient of alpha
surfaceVectorField gradAlphaf = fvc::interpolate(gradAlpha);
*/
surfaceVectorField gradAlphaf
(
fvc::interpolate(alpha2)*fvc::interpolate(fvc::grad(alpha1))
- fvc::interpolate(alpha1)*fvc::interpolate(fvc::grad(alpha2))
);
// Face unit interface normal
return gradAlphaf/(mag(gradAlphaf) + deltaN_);
}
Foam::tmp<Foam::surfaceScalarField> Foam::multiphaseSystem::nHatf
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const
{
// Face unit interface normal flux
return nHatfv(alpha1, alpha2) & mesh_.Sf();
}
// Correction for the boundary condition on the unit normal nHat on
// walls to produce the correct contact angle.
// The dynamic contact angle is calculated from the component of the
// velocity on the direction of the interface, parallel to the wall.
void Foam::multiphaseSystem::correctContactAngle
(
const phaseModel& phase1,
const phaseModel& phase2,
surfaceVectorField::Boundary& nHatb
) const
{
const volScalarField::Boundary& gbf
= phase1.boundaryField();
const fvBoundaryMesh& boundary = mesh_.boundary();
forAll(boundary, patchi)
{
if (isA<alphaContactAngleFvPatchScalarField>(gbf[patchi]))
{
const alphaContactAngleFvPatchScalarField& acap =
refCast<const alphaContactAngleFvPatchScalarField>(gbf[patchi]);
vectorField& nHatPatch = nHatb[patchi];
vectorField AfHatPatch
(
mesh_.Sf().boundaryField()[patchi]
/mesh_.magSf().boundaryField()[patchi]
);
alphaContactAngleFvPatchScalarField::thetaPropsTable::
const_iterator tp =
acap.thetaProps().find(interfacePair(phase1, phase2));
if (tp == acap.thetaProps().end())
{
FatalErrorInFunction
<< "Cannot find interface " << interfacePair(phase1, phase2)
<< "\n in table of theta properties for patch "
<< acap.patch().name()
<< exit(FatalError);
}
bool matched = (tp.key().first() == phase1.name());
const scalar theta0 = degToRad(tp().theta0(matched));
scalarField theta(boundary[patchi].size(), theta0);
scalar uTheta = tp().uTheta();
// Calculate the dynamic contact angle if required
if (uTheta > SMALL)
{
const scalar thetaA = degToRad(tp().thetaA(matched));
const scalar thetaR = degToRad(tp().thetaR(matched));
// Calculated the component of the velocity parallel to the wall
vectorField Uwall
(
phase1.U().boundaryField()[patchi].patchInternalField()
- phase1.U().boundaryField()[patchi]
);
Uwall -= (AfHatPatch & Uwall)*AfHatPatch;
// Find the direction of the interface parallel to the wall
vectorField nWall
(
nHatPatch - (AfHatPatch & nHatPatch)*AfHatPatch
);
// Normalise nWall
nWall /= (mag(nWall) + SMALL);
// Calculate Uwall resolved normal to the interface parallel to
// the interface
scalarField uwall(nWall & Uwall);
theta += (thetaA - thetaR)*tanh(uwall/uTheta);
}
// Reset nHatPatch to correspond to the contact angle
scalarField a12(nHatPatch & AfHatPatch);
scalarField b1(cos(theta));
scalarField b2(nHatPatch.size());
forAll(b2, facei)
{
b2[facei] = cos(acos(a12[facei]) - theta[facei]);
}
scalarField det(1.0 - a12*a12);
scalarField a((b1 - a12*b2)/det);
scalarField b((b2 - a12*b1)/det);
nHatPatch = a*AfHatPatch + b*nHatPatch;
nHatPatch /= (mag(nHatPatch) + deltaN_.value());
}
}
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::K
(
const phaseModel& phase1,
const phaseModel& phase2
) const
{
tmp<surfaceVectorField> tnHatfv = nHatfv(phase1, phase2);
correctContactAngle(phase1, phase2, tnHatfv.ref().boundaryFieldRef());
// Simple expression for curvature
return -fvc::div(tnHatfv & mesh_.Sf());
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::multiphaseSystem::multiphaseSystem
(
const volVectorField& U,
const surfaceScalarField& phi
)
:
IOdictionary
(
IOobject
(
"transportProperties",
U.time().constant(),
U.db(),
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
),
phases_(lookup("phases"), phaseModel::iNew(U.mesh())),
mesh_(U.mesh()),
phi_(phi),
alphas_
(
IOobject
(
"alphas",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh_,
dimensionedScalar(dimless, Zero)
),
sigmas_(lookup("sigmas")),
dimSigma_(1, 0, -2, 0, 0),
cAlphas_(lookup("interfaceCompression")),
Cvms_(lookup("virtualMass")),
deltaN_
(
"deltaN",
1e-8/pow(average(mesh_.V()), 1.0/3.0)
)
{
calcAlphas();
alphas_.write();
interfaceDictTable dragModelsDict(lookup("drag"));
forAllConstIter(interfaceDictTable, dragModelsDict, iter)
{
dragModels_.insert
(
iter.key(),
dragModel::New
(
iter(),
*phases_.lookup(iter.key().first()),
*phases_.lookup(iter.key().second())
)
);
}
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter1)
{
const phaseModel& phase1 = iter1();
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter2)
{
const phaseModel& phase2 = iter2();
if (&phase2 != &phase1)
{
scalarCoeffSymmTable::const_iterator sigma
(
sigmas_.find(interfacePair(phase1, phase2))
);
if (sigma != sigmas_.end())
{
scalarCoeffSymmTable::const_iterator cAlpha
(
cAlphas_.find(interfacePair(phase1, phase2))
);
if (cAlpha == cAlphas_.end())
{
WarningInFunction
<< "Compression coefficient not specified for "
"phase pair ("
<< phase1.name() << ' ' << phase2.name()
<< ") for which a surface tension "
"coefficient is specified"
<< endl;
}
}
}
}
}
}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::rho() const
{
PtrDictionary<phaseModel>::const_iterator iter = phases_.begin();
tmp<volScalarField> trho = iter()*iter().rho();
volScalarField& rho = trho.ref();
for (++iter; iter != phases_.end(); ++iter)
{
rho += iter()*iter().rho();
}
return trho;
}
Foam::tmp<Foam::scalarField>
Foam::multiphaseSystem::rho(const label patchi) const
{
PtrDictionary<phaseModel>::const_iterator iter = phases_.begin();
tmp<scalarField> trho = iter().boundaryField()[patchi]*iter().rho().value();
scalarField& rho = trho.ref();
for (++iter; iter != phases_.end(); ++iter)
{
rho += iter().boundaryField()[patchi]*iter().rho().value();
}
return trho;
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::nu() const
{
PtrDictionary<phaseModel>::const_iterator iter = phases_.begin();
tmp<volScalarField> tmu = iter()*(iter().rho()*iter().nu());
volScalarField& mu = tmu.ref();
for (++iter; iter != phases_.end(); ++iter)
{
mu += iter()*(iter().rho()*iter().nu());
}
return tmu/rho();
}
Foam::tmp<Foam::scalarField>
Foam::multiphaseSystem::nu(const label patchi) const
{
PtrDictionary<phaseModel>::const_iterator iter = phases_.begin();
tmp<scalarField> tmu =
iter().boundaryField()[patchi]
*(iter().rho().value()*iter().nu().value());
scalarField& mu = tmu.ref();
for (++iter; iter != phases_.end(); ++iter)
{
mu +=
iter().boundaryField()[patchi]
*(iter().rho().value()*iter().nu().value());
}
return tmu/rho(patchi);
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::Cvm
(
const phaseModel& phase
) const
{
tmp<volScalarField> tCvm
(
new volScalarField
(
IOobject
(
"Cvm",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimensionSet(1, -3, 0, 0, 0), Zero)
)
);
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter)
{
const phaseModel& phase2 = iter();
if (&phase2 != &phase)
{
scalarCoeffTable::const_iterator Cvm
(
Cvms_.find(interfacePair(phase, phase2))
);
if (Cvm != Cvms_.end())
{
tCvm.ref() += Cvm()*phase2.rho()*phase2;
}
else
{
Cvm = Cvms_.find(interfacePair(phase2, phase));
if (Cvm != Cvms_.end())
{
tCvm.ref() += Cvm()*phase.rho()*phase2;
}
}
}
}
return tCvm;
}
Foam::tmp<Foam::volVectorField> Foam::multiphaseSystem::Svm
(
const phaseModel& phase
) const
{
tmp<volVectorField> tSvm
(
new volVectorField
(
IOobject
(
"Svm",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedVector(dimensionSet(1, -2, -2, 0, 0), Zero)
)
);
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter)
{
const phaseModel& phase2 = iter();
if (&phase2 != &phase)
{
scalarCoeffTable::const_iterator Cvm
(
Cvms_.find(interfacePair(phase, phase2))
);
if (Cvm != Cvms_.end())
{
tSvm.ref() += Cvm()*phase2.rho()*phase2*phase2.DDtU();
}
else
{
Cvm = Cvms_.find(interfacePair(phase2, phase));
if (Cvm != Cvms_.end())
{
tSvm.ref() += Cvm()*phase.rho()*phase2*phase2.DDtU();
}
}
}
}
volVectorField::Boundary& SvmBf =
tSvm.ref().boundaryFieldRef();
// Remove virtual mass at fixed-flux boundaries
forAll(phase.phi().boundaryField(), patchi)
{
if
(
isA<fixedValueFvsPatchScalarField>
(
phase.phi().boundaryField()[patchi]
)
)
{
SvmBf[patchi] = Zero;
}
}
return tSvm;
}
Foam::autoPtr<Foam::multiphaseSystem::dragCoeffFields>
Foam::multiphaseSystem::dragCoeffs() const
{
auto dragCoeffsPtr = autoPtr<dragCoeffFields>::New();
forAllConstIter(dragModelTable, dragModels_, iter)
{
const dragModel& dm = *iter();
volScalarField* Kptr =
(
max
(
//fvc::average(dm.phase1()*dm.phase2()),
//fvc::average(dm.phase1())*fvc::average(dm.phase2()),
dm.phase1()*dm.phase2(),
dm.residualPhaseFraction()
)
*dm.K
(
max
(
mag(dm.phase1().U() - dm.phase2().U()),
dm.residualSlip()
)
)
).ptr();
volScalarField::Boundary& Kbf = Kptr->boundaryFieldRef();
// Remove drag at fixed-flux boundaries
forAll(dm.phase1().phi().boundaryField(), patchi)
{
if
(
isA<fixedValueFvsPatchScalarField>
(
dm.phase1().phi().boundaryField()[patchi]
)
)
{
Kbf[patchi] = 0.0;
}
}
dragCoeffsPtr().set(iter.key(), Kptr);
}
return dragCoeffsPtr;
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::dragCoeff
(
const phaseModel& phase,
const dragCoeffFields& dragCoeffs
) const
{
tmp<volScalarField> tdragCoeff
(
new volScalarField
(
IOobject
(
"dragCoeff",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimensionSet(1, -3, -1, 0, 0), Zero)
)
);
dragModelTable::const_iterator dmIter = dragModels_.begin();
dragCoeffFields::const_iterator dcIter = dragCoeffs.begin();
for
(
;
dmIter != dragModels_.end() && dcIter != dragCoeffs.end();
++dmIter, ++dcIter
)
{
if
(
&phase == &dmIter()->phase1()
|| &phase == &dmIter()->phase2()
)
{
tdragCoeff.ref() += *dcIter();
}
}
return tdragCoeff;
}
Foam::tmp<Foam::surfaceScalarField> Foam::multiphaseSystem::surfaceTension
(
const phaseModel& phase1
) const
{
tmp<surfaceScalarField> tSurfaceTension
(
new surfaceScalarField
(
IOobject
(
"surfaceTension",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimensionSet(1, -2, -2, 0, 0), Zero)
)
);
tSurfaceTension.ref().setOriented();
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter)
{
const phaseModel& phase2 = iter();
if (&phase2 != &phase1)
{
scalarCoeffSymmTable::const_iterator sigma
(
sigmas_.find(interfacePair(phase1, phase2))
);
if (sigma != sigmas_.end())
{
tSurfaceTension.ref() +=
dimensionedScalar("sigma", dimSigma_, sigma())
*fvc::interpolate(K(phase1, phase2))*
(
fvc::interpolate(phase2)*fvc::snGrad(phase1)
- fvc::interpolate(phase1)*fvc::snGrad(phase2)
);
}
}
}
return tSurfaceTension;
}
Foam::tmp<Foam::volScalarField>
Foam::multiphaseSystem::nearInterface() const
{
tmp<volScalarField> tnearInt
(
new volScalarField
(
IOobject
(
"nearInterface",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimless, Zero)
)
);
forAllConstIter(PtrDictionary<phaseModel>, phases_, iter)
{
tnearInt.ref() =
max(tnearInt(), pos0(iter() - 0.01)*pos0(0.99 - iter()));
}
return tnearInt;
}
void Foam::multiphaseSystem::solve()
{
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
iter().correct();
}
const Time& runTime = mesh_.time();
const dictionary& alphaControls = mesh_.solverDict("alpha");
label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));
if (nAlphaSubCycles > 1)
{
dimensionedScalar totalDeltaT = runTime.deltaT();
PtrList<volScalarField> alpha0s(phases_.size());
PtrList<surfaceScalarField> alphaPhiSums(phases_.size());
int phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phaseModel& phase = iter();
volScalarField& alpha = phase;
alpha0s.set
(
phasei,
new volScalarField(alpha.oldTime())
);
alphaPhiSums.set
(
phasei,
new surfaceScalarField
(
IOobject
(
"phiSum" + alpha.name(),
runTime.timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimensionSet(0, 3, -1, 0, 0), Zero)
)
);
phasei++;
}
for
(
subCycleTime alphaSubCycle
(
const_cast<Time&>(runTime),
nAlphaSubCycles
);
!(++alphaSubCycle).end();
)
{
solveAlphas();
int phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
alphaPhiSums[phasei] += iter().alphaPhi()/nAlphaSubCycles;
phasei++;
}
}
phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
phaseModel& phase = iter();
volScalarField& alpha = phase;
phase.alphaPhi() = alphaPhiSums[phasei];
// Correct the time index of the field
// to correspond to the global time
alpha.timeIndex() = runTime.timeIndex();
// Reset the old-time field value
alpha.oldTime() = alpha0s[phasei];
alpha.oldTime().timeIndex() = runTime.timeIndex();
phasei++;
}
}
else
{
solveAlphas();
}
}
bool Foam::multiphaseSystem::read()
{
if (regIOobject::read())
{
bool readOK = true;
PtrList<entry> phaseData(lookup("phases"));
label phasei = 0;
forAllIter(PtrDictionary<phaseModel>, phases_, iter)
{
readOK &= iter().read(phaseData[phasei++].dict());
}
lookup("sigmas") >> sigmas_;
lookup("interfaceCompression") >> cAlphas_;
lookup("virtualMass") >> Cvms_;
return readOK;
}
else
{
return false;
}
}
// ************************************************************************* //