openfoam/applications/solvers/multiphase/compressibleTwoPhaseEulerFoam/twoPhaseSystem/twoPhaseSystem.C
Henry f348ad8a92 compressibleTwoPhaseEulerFoam: Updated to use the new templated turbulence library
Supports separate turbulence models for each phase
Complete Lahey k-epsilon model provided
kineticTheory and particle-pressure models folded into same turbulence framework
by the addition of phase-pressure functions
2013-07-28 18:05:41 +01:00

391 lines
8.6 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "twoPhaseSystem.H"
#include "surfaceInterpolate.H"
#include "fixedValueFvsPatchFields.H"
#include "fvcCurl.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::twoPhaseSystem::twoPhaseSystem
(
const fvMesh& mesh
)
:
IOdictionary
(
IOobject
(
"phaseProperties",
mesh.time().constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
),
mesh_(mesh),
phase1_
(
*this,
*this,
wordList(lookup("phases"))[0]
),
phase2_
(
*this,
*this,
wordList(lookup("phases"))[1]
),
Cvm_
(
"Cvm",
dimless,
lookup("Cvm")
),
Cl_
(
"Cl",
dimless,
lookup("Cl")
),
drag1_
(
dragModel::New
(
subDict("drag"),
phase1_,
phase1_,
phase2_
)
),
drag2_
(
dragModel::New
(
subDict("drag"),
phase2_,
phase2_,
phase1_
)
),
heatTransfer1_
(
heatTransferModel::New
(
subDict("heatTransfer"),
phase1_,
phase1_,
phase2_
)
),
heatTransfer2_
(
heatTransferModel::New
(
subDict("heatTransfer"),
phase2_,
phase2_,
phase1_
)
),
dispersedPhase_(lookup("dispersedPhase")),
residualPhaseFraction_
(
readScalar(lookup("residualPhaseFraction"))
),
residualSlip_
(
"residualSlip",
dimVelocity,
lookup("residualSlip")
)
{
if
(
!(
dispersedPhase_ == phase1_.name()
|| dispersedPhase_ == phase2_.name()
|| dispersedPhase_ == "both"
)
)
{
FatalErrorIn("twoPhaseSystem::twoPhaseSystem(const fvMesh& mesh)")
<< "invalid dispersedPhase " << dispersedPhase_
<< exit(FatalError);
}
Info << "dispersedPhase is " << dispersedPhase_ << endl;
// Ensure the phase-fractions sum to 1
phase2_.volScalarField::operator=(scalar(1) - phase1_);
}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::rho() const
{
return phase1_*phase1_.thermo().rho() + phase2_*phase2_.thermo().rho();
}
Foam::tmp<Foam::volVectorField> Foam::twoPhaseSystem::U() const
{
return phase1_*phase1_.U() + phase2_*phase2_.U();
}
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::phi() const
{
return
fvc::interpolate(phase1_)*phase1_.phi()
+ fvc::interpolate(phase2_)*phase2_.phi();
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::dragCoeff() const
{
tmp<volScalarField> tdragCoeff
(
new volScalarField
(
IOobject
(
"dragCoeff",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar("dragCoeff", dimensionSet(1, -3, -1, 0, 0), 0)
)
);
volScalarField& dragCoeff = tdragCoeff();
volVectorField Ur(phase1_.U() - phase2_.U());
volScalarField magUr(mag(Ur) + residualSlip_);
if (dispersedPhase_ == phase1_.name())
{
dragCoeff = drag1().K(magUr);
}
else if (dispersedPhase_ == phase2_.name())
{
dragCoeff = drag2().K(magUr);
}
else if (dispersedPhase_ == "both")
{
dragCoeff =
(
phase2_*drag1().K(magUr)
+ phase1_*drag2().K(magUr)
);
}
else
{
FatalErrorIn("twoPhaseSystem::dragCoeff()")
<< "dispersedPhase: " << dispersedPhase_ << " is incorrect"
<< exit(FatalError);
}
volScalarField alphaCoeff(max(phase1_*phase2_, residualPhaseFraction_));
dragCoeff *= alphaCoeff;
// Remove drag at fixed-flux boundaries
forAll(phase1_.phi().boundaryField(), patchi)
{
if
(
isA<fixedValueFvsPatchScalarField>
(
phase1_.phi().boundaryField()[patchi]
)
)
{
dragCoeff.boundaryField()[patchi] = 0.0;
}
}
return tdragCoeff;
}
Foam::tmp<Foam::volVectorField> Foam::twoPhaseSystem::liftForce
(
const volVectorField& U
) const
{
tmp<volVectorField> tliftForce
(
new volVectorField
(
IOobject
(
"liftForce",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedVector
(
"liftForce",
dimensionSet(1, -2, -2, 0, 0),
vector::zero
)
)
);
volVectorField& liftForce = tliftForce();
volVectorField Ur(phase1_.U() - phase2_.U());
liftForce =
Cl_*(phase1_*phase1_.rho() + phase2_*phase2_.rho())
*(Ur ^ fvc::curl(U));
// Remove lift at fixed-flux boundaries
forAll(phase1_.phi().boundaryField(), patchi)
{
if
(
isA<fixedValueFvsPatchScalarField>
(
phase1_.phi().boundaryField()[patchi]
)
)
{
liftForce.boundaryField()[patchi] = vector::zero;
}
}
return tliftForce;
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::heatTransferCoeff() const
{
tmp<volScalarField> theatTransferCoeff
(
new volScalarField
(
IOobject
(
"heatTransferCoeff",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar
(
"heatTransferCoeff",
dimensionSet(1, -1, -3, -1, 0),
0
)
)
);
volScalarField& heatTransferCoeff = theatTransferCoeff();
volVectorField Ur(phase1_.U() - phase2_.U());
volScalarField magUr(mag(Ur) + residualSlip_);
if (dispersedPhase_ == phase1_.name())
{
heatTransferCoeff = heatTransfer1().K(magUr);
}
else if (dispersedPhase_ == phase2_.name())
{
heatTransferCoeff = heatTransfer2().K(magUr);
}
else if (dispersedPhase_ == "both")
{
heatTransferCoeff =
(
phase2_*heatTransfer1().K(magUr)
+ phase1_*heatTransfer2().K(magUr)
);
}
else
{
FatalErrorIn("twoPhaseSystem::heatTransferCoeff()")
<< "dispersedPhase: " << dispersedPhase_ << " is incorrect"
<< exit(FatalError);
}
volScalarField alphaCoeff(max(phase1_*phase2_, residualPhaseFraction_));
heatTransferCoeff *= alphaCoeff;
// Remove heatTransfer at fixed-flux boundaries
forAll(phase1_.phi().boundaryField(), patchi)
{
if
(
isA<fixedValueFvsPatchScalarField>
(
phase1_.phi().boundaryField()[patchi]
)
)
{
heatTransferCoeff.boundaryField()[patchi] = 0.0;
}
}
return theatTransferCoeff;
}
bool Foam::twoPhaseSystem::read()
{
if (regIOobject::read())
{
bool readOK = true;
readOK &= phase1_.read();
readOK &= phase2_.read();
lookup("Cvm") >> Cvm_;
lookup("Cl") >> Cl_;
return readOK;
}
else
{
return false;
}
}
// ************************************************************************* //