openfoam/src/OpenFOAM/primitives/functions/Math/invIncGamma.C
Mark Olesen ae6320c285 COMP: references to temporaries
COMP: include <limits>
2022-06-23 09:44:12 +02:00

326 lines
9.2 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2016 OpenFOAM Foundation
Copyright (C) 2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Global
Foam::Math::invIncGamma
Description
Implementation of the inverse incomplete gamma function.
\*---------------------------------------------------------------------------*/
#include "MathFunctions.H"
#include "mathematicalConstants.H"
#include "error.H"
#include <cmath>
#include <limits>
using namespace Foam::constant::mathematical;
// * * * * * * * * * * * * * * * Local Functions * * * * * * * * * * * * * * //
namespace Foam
{
static scalar minimaxs(const scalar P)
{
// (DM:Eq. 32)
constexpr scalar a_0 = 3.31125922108741;
constexpr scalar a_1 = 11.6616720288968;
constexpr scalar a_2 = 4.28342155967104;
constexpr scalar a_3 = 0.213623493715853;
constexpr scalar b_0 = 6.61053765625462;
constexpr scalar b_1 = 6.40691597760039;
constexpr scalar b_2 = 1.27364489782223;
constexpr scalar b_3 = 0.03611708101884203;
const scalar t = P < 0.5 ? sqrt(-2*log(P)) : sqrt(-2*log(1 - P));
const scalar s =
t
- (a_0 + t*(a_1 + t*(a_2 + t*a_3)))
/(1 + t*(b_0 + t*(b_1 + t*(b_2 + t*b_3))));
return P < 0.5 ? -s : s;
}
static scalar Sn(const scalar a, const scalar x)
{
// (DM:Eq. 34)
scalar Sn = 1;
scalar Si = 1;
for (int i=1; i<100; ++i)
{
Si *= x/(a + i);
Sn += Si;
if (Si < 1e-4) break;
}
return Sn;
}
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Foam::scalar Foam::Math::invIncGamma(const scalar a, const scalar P)
{
#ifdef FULLDEBUG
if (a <= 0)
{
WarningInFunction
<< "The parameter (i.e. a) cannot be negative or zero"
<< " a = " << a
<< endl;
return std::numeric_limits<scalar>::infinity();
}
if (P < 0 || P > 1)
{
WarningInFunction
<< "The domain of the parameter (i.e. P) should be limited to [0,1]"
<< " P = " << P
<< endl;
return std::numeric_limits<scalar>::infinity();
}
#endif
const scalar Q = 1 - P;
if (a == 1)
{
return -log(Q);
}
else if (a < 1)
{
const scalar Ga = tgamma(a);
const scalar B = Q*Ga;
if (B > 0.6 || (B >= 0.45 && a >= 0.3))
{
// (DM:Eq. 21)
const scalar u =
(B*Q > 1e-8) ? pow(P*Ga*a, 1/a) : exp((-Q/a) - Eu);
return u/(1 - (u/(a + 1)));
}
else if (a < 0.3 && B >= 0.35)
{
// (DM:Eq. 22)
const scalar t = exp(-Eu - B);
const scalar u = t*exp(t);
return t*exp(u);
}
else if (B > 0.15 || a >= 0.3)
{
// (DM:Eq. 23)
const scalar y = -log(B);
const scalar u = y - (1 - a)*log(y);
return y - (1 - a)*log(u) - log(1 + (1 - a)/(1 + u));
}
else if (B > 0.1)
{
// (DM:Eq. 24)
const scalar y = -log(B);
const scalar u = y - (1 - a)*log(y);
return y
- (1 - a)*log(u)
- log
(
(sqr(u) + 2*(3 - a)*u + (2 - a)*(3 - a))
/(sqr(u) + (5 - a)*u + 2)
);
}
else
{
// (DM:Eq. 25)
const scalar y = -log(B);
const scalar c1 = (a - 1)*log(y);
const scalar c12 = c1*c1;
const scalar c13 = c12*c1;
const scalar c14 = c12*c12;
const scalar a2 = a*a;
const scalar a3 = a2*a;
const scalar c2 = (a - 1)*(1 + c1);
const scalar c3 = (a - 1)*(-(c12/2) + (a - 2)*c1 + (3*a - 5)/2);
const scalar c4 =
(a - 1)
*(
(c13/3)
- (3*a - 5)*c12/2
+ (a2 - 6*a + 7)*c1
+ (11*a2 - 46*a + 47)/6
);
const scalar c5 =
(a - 1)*(-(c14/4)
+ (11*a - 17)*c13/6
+ (-3*a2 + 13*a - 13)*c12
+ (2*a3 - 25*a2 + 72*a - 61)*c1/2
+ (25*a3 - 195*a2 + 477*a - 379)/12);
const scalar y2 = y*y;
const scalar y3 = y2*y;
const scalar y4 = y2*y2;
return y + c1 + (c2/y) + (c3/y2) + (c4/y3) + (c5/y4);
}
}
else
{
// (DM:Eq. 31)
scalar s = minimaxs(P);
const scalar s2 = sqr(s);
const scalar s3 = s*s2;
const scalar s4 = s2*s2;
const scalar s5 = s*s4;
const scalar sqrta = sqrt(a);
const scalar w =
a + s*sqrta + (s2 - 1)/3
+ (s3 - 7*s)/(36*sqrta)
- (3*s4 + 7*s2 - 16)/(810*a)
+ (9*s5 + 256*s3 - 433*s)/(38880*a*sqrta);
if (a >= 500 && mag(1 - w/a) < 1e-6)
{
return w;
}
else if (P > 0.5)
{
if (w < 3*a)
{
return w;
}
else
{
const scalar D = max(scalar(2), scalar(a*(a - 1)));
const scalar lnGa = lgamma(a);
const scalar lnB = log(Q) + lnGa;
if (lnB < -2.3*D)
{
// (DM:Eq. 25)
const scalar y = -lnB;
const scalar c1 = (a - 1)*log(y);
const scalar c12 = c1*c1;
const scalar c13 = c12*c1;
const scalar c14 = c12*c12;
const scalar a2 = a*a;
const scalar a3 = a2*a;
const scalar c2 = (a - 1)*(1 + c1);
const scalar c3 =
(a - 1)
*(
- (c12/2)
+ (a - 2)*c1
+ (3*a - 5)/2
);
const scalar c4 =
(a - 1)
*(
(c13/3)
- (3*a - 5)*c12/2
+ (a2 - 6*a + 7)*c1
+ (11*a2 - 46*a + 47)/6
);
const scalar c5 =
(a - 1)
*(
- (c14/4)
+ (11*a - 17)*c13/6
+ (-3*a2 + 13*a - 13)*c12
+ (2*a3 - 25*a2 + 72*a - 61)*c1/2
+ (25*a3 - 195*a2 + 477*a - 379)/12
);
const scalar y2 = y*y;
const scalar y3 = y2*y;
const scalar y4 = y2*y2;
return y + c1 + (c2/y) + (c3/y2) + (c4/y3) + (c5/y4);
}
else
{
// (DM:Eq. 33)
const scalar u =
-lnB + (a - 1)*log(w) - log(1 + (1 - a)/(1 + w));
return -lnB + (a - 1)*log(u) - log(1 + (1 - a)/(1 + u));
}
}
}
else
{
scalar z = w;
const scalar ap1 = a + 1;
if (w < 0.15*ap1)
{
// (DM:Eq. 35)
const scalar ap2 = a + 2;
const scalar v = log(P) + lgamma(ap1);
z = exp((v + w)/a);
s = log1p(z/ap1*(1 + z/ap2));
z = exp((v + z - s)/a);
s = log1p(z/ap1*(1 + z/ap2));
z = exp((v + z - s)/a);
s = log1p(z/ap1*(1 + z/ap2*(1 + z/(a + 3))));
z = exp((v + z - s)/a);
}
if (z <= 0.01*ap1 || z > 0.7*ap1)
{
return z;
}
else
{
// (DM:Eq. 36)
const scalar lnSn = log(Sn(a, z));
const scalar v = log(P) + lgamma(ap1);
z = exp((v + z - lnSn)/a);
return z*(1 - (a*log(z) - z - v + lnSn)/(a - z));
}
}
}
}
// ************************************************************************* //