openfoam/applications/test/fvc/Test-fvc.C
Mark Olesen b2bded48c9 STYLE: use Time::printExecutionTime() method
- makes format of ExecutionTime = ... output configurable (#788)
  and reduces code clutter.

STYLE: more consistent line-breaks after "End" tag
2020-08-07 09:24:56 +02:00

67 lines
2.1 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2013 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
test
Description
Finite volume method test code.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
volScalarField fx(pow(mesh.C().component(vector::X), 1));
fx.write();
volScalarField gradx4(fvc::grad(fx)().component(vector::X));
gradx4.write();
volVectorField curlC(fvc::curl(1.0*mesh.C()));
curlC.write();
surfaceScalarField xf(mesh.Cf().component(vector::X));
surfaceScalarField xf4(pow(xf, 4));
for (int i=1; i<xf4.size()-1; i++)
{
scalar gradx4a = (xf4[i] - xf4[i-1])/(xf[i] - xf[i-1]);
Info<< (gradx4a - gradx4[i])/gradx4a << endl;
}
Info<< "End\n" << endl;
}
// ************************************************************************* //