openfoam/applications/utilities/postProcessing/optimisation/cumulativeDisplacement/cumulativeDisplacement.C
Vaggelis Papoutsis b863254308 ENH: New adjont shape optimisation functionality
The adjoint library is enhanced with new functionality enabling
automated shape optimisation loops.  A parameterisation scheme based on
volumetric B-Splines is introduced, the control points of which act as
the design variables in the optimisation loop [1, 2].  The control
points of the volumetric B-Splines boxes can be defined in either
Cartesian or cylindrical coordinates.

The entire loop (solution of the flow and adjoint equations, computation
of sensitivity derivatives, update of the design variables and mesh) is
run within adjointOptimisationFoam. A number of methods to update the
design variables are implemented, including popular Quasi-Newton methods
like BFGS and methods capable of handling constraints like loop using
the SQP or constraint projection.

The software was developed by PCOpt/NTUA and FOSS GP, with contributions from

Dr. Evangelos Papoutsis-Kiachagias,
Konstantinos Gkaragounis,
Professor Kyriakos Giannakoglou,
Andy Heather

[1] E.M. Papoutsis-Kiachagias, N. Magoulas, J. Mueller, C. Othmer,
K.C.  Giannakoglou: 'Noise Reduction in Car Aerodynamics using a
Surrogate Objective Function and the Continuous  Adjoint Method with
Wall Functions', Computers & Fluids, 122:223-232, 2015

[2] E. M. Papoutsis-Kiachagias, V. G. Asouti, K. C. Giannakoglou,
K.  Gkagkas, S. Shimokawa, E. Itakura: ‘Multi-point aerodynamic shape
optimization of cars based on continuous adjoint’, Structural and
Multidisciplinary Optimization, 59(2):675–694, 2019
2019-12-12 14:17:29 +00:00

162 lines
5.4 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2007-2019 PCOpt/NTUA
Copyright (C) 2013-2019 FOSS GP
Copyright (C) 2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
cumulativeDisplacement
Description
Computes and writes the difference between the mesh points in each time
instance and the ones in the constant folder. Additionally, the projection
of this difference to the normal point vectors of the initial mesh is also
written
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "emptyFvPatch.H"
#include "coupledFvPatch.H"
#include "pointMesh.H"
#include "pointPatchField.H"
#include "pointPatchFieldsFwd.H"
#include "syncTools.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
timeSelector::addOptions();
#include "addRegionOption.H"
#include "setRootCase.H"
#include "createTime.H"
instantList timeDirs = timeSelector::select0(runTime, args);
#include "createNamedMesh.H"
#include "createFields.H"
// polyPatch::pointNormals will give the wrong result for points
// belonging to multiple patches or patch-processorPatch intersections.
// Keeping a mesh-wide field to allow easy reduction using syncTools.
// A bit expensive? Better way?
vectorField pointNormals(mesh.nPoints(), vector::zero);
for (const fvPatch& patch : mesh.boundary())
{
// Each local patch point belongs to these local patch faces.
// Local numbering
const labelListList& patchPointFaces = patch.patch().pointFaces();
if (!isA<coupledFvPatch>(patch) && !isA<emptyFvPatch>(patch))
{
const labelList& meshPoints = patch.patch().meshPoints();
const vectorField nf(patch.nf());
forAll(meshPoints, ppI)
{
const labelList& pointFaces = patchPointFaces[ppI];
forAll(pointFaces, pfI)
{
const label& localFaceIndex = pointFaces[pfI];
pointNormals[meshPoints[ppI]] += nf[localFaceIndex];
}
}
}
}
// Sum from all processors
syncTools::syncPointList
(
mesh, pointNormals, plusEqOp<vector>(), vector::zero
);
pointNormals /= mag(pointNormals) + VSMALL;
forAll(timeDirs, timeI)
{
runTime.setTime(timeDirs[timeI], timeI);
Info<< "Time = " << runTime.timeName() << endl;
mesh.readUpdate();
const pointMesh& pMesh(pointMesh::New(mesh));
// Point displacement projected to the
// unit point normal of the initial geometry
pointScalarField normalDisplacement
(
IOobject
(
"normalDisplacement",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
pMesh,
dimensionedScalar(dimless, Zero)
);
// Point displacement as a vector
pointVectorField displacement
(
IOobject
(
"displacement",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
pMesh,
dimensionedVector(dimless, Zero)
);
Info<< "Calculating cumulative mesh movement for time "
<< runTime.timeName() << endl;
// Normal displacement
const pointField& meshPoints = mesh.points();
forAll(mesh.boundary(), pI)
{
const polyPatch& patch = mesh.boundaryMesh()[pI];
const labelList& localPoints = patch.meshPoints();
forAll(localPoints, ppI)
{
label pointI = localPoints[ppI];
normalDisplacement[pointI] =
(meshPoints[pointI] - points0[pointI])
& pointNormals[pointI];
}
}
normalDisplacement.write();
// Vectorial displacement
displacement.primitiveFieldRef() = meshPoints - points0;
displacement.write();
}
// Print execution time
mesh.time().printExecutionTime(Info);
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //