- The bitSet class replaces the old PackedBoolList class. The redesign provides better block-wise access and reduced method calls. This helps both in cases where the bitSet may be relatively sparse, and in cases where advantage of contiguous operations can be made. This makes it easier to work with a bitSet as top-level object. In addition to the previously available count() method to determine if a bitSet is being used, now have simpler queries: - all() - true if all bits in the addressable range are empty - any() - true if any bits are set at all. - none() - true if no bits are set. These are faster than count() and allow early termination. The new test() method tests the value of a single bit position and returns a bool without any ambiguity caused by the return type (like the get() method), nor the const/non-const access (like operator[] has). The name corresponds to what std::bitset uses. The new find_first(), find_last(), find_next() methods provide a faster means of searching for bits that are set. This can be especially useful when using a bitSet to control an conditional: OLD (with macro): forAll(selected, celli) { if (selected[celli]) { sumVol += mesh_.cellVolumes()[celli]; } } NEW (with const_iterator): for (const label celli : selected) { sumVol += mesh_.cellVolumes()[celli]; } or manually for ( label celli = selected.find_first(); celli != -1; celli = selected.find_next() ) { sumVol += mesh_.cellVolumes()[celli]; } - When marking up contiguous parts of a bitset, an interval can be represented more efficiently as a labelRange of start/size. For example, OLD: if (isA<processorPolyPatch>(pp)) { forAll(pp, i) { ignoreFaces.set(i); } } NEW: if (isA<processorPolyPatch>(pp)) { ignoreFaces.set(pp.range()); }
878 lines
22 KiB
C
878 lines
22 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2015 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Application
|
|
surfaceInflate
|
|
|
|
Group
|
|
grpSurfaceUtilities
|
|
|
|
Description
|
|
Inflates surface. WIP. Checks for overlaps and locally lowers
|
|
inflation distance
|
|
|
|
Usage
|
|
- surfaceInflate [OPTION]
|
|
|
|
\param -checkSelfIntersection \n
|
|
Includes checks for self-intersection.
|
|
|
|
\param -nSmooth
|
|
Specify number of smoothing iterations
|
|
|
|
\param -featureAngle
|
|
Specify a feature angle
|
|
|
|
|
|
E.g. inflate surface by 20mm with 1.5 safety factor:
|
|
surfaceInflate DTC-scaled.obj 0.02 1.5 -featureAngle 45 -nSmooth 2
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "argList.H"
|
|
#include "Time.H"
|
|
#include "triSurfaceFields.H"
|
|
#include "triSurfaceMesh.H"
|
|
#include "triSurfaceGeoMesh.H"
|
|
#include "bitSet.H"
|
|
#include "OBJstream.H"
|
|
#include "surfaceFeatures.H"
|
|
|
|
using namespace Foam;
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
scalar calcVertexNormalWeight
|
|
(
|
|
const triFace& f,
|
|
const label pI,
|
|
const vector& fN,
|
|
const pointField& points
|
|
)
|
|
{
|
|
label index = f.find(pI);
|
|
|
|
if (index == -1)
|
|
{
|
|
FatalErrorInFunction
|
|
<< "Point not in face" << abort(FatalError);
|
|
}
|
|
|
|
const vector e1 = points[f[index]] - points[f[f.fcIndex(index)]];
|
|
const vector e2 = points[f[index]] - points[f[f.rcIndex(index)]];
|
|
|
|
return mag(fN)/(magSqr(e1)*magSqr(e2) + VSMALL);
|
|
}
|
|
|
|
|
|
tmp<vectorField> calcVertexNormals(const triSurface& surf)
|
|
{
|
|
// Weighted average of normals of faces attached to the vertex
|
|
// Weight = fA / (mag(e0)^2 * mag(e1)^2);
|
|
tmp<vectorField> tpointNormals
|
|
(
|
|
new pointField(surf.nPoints(), Zero)
|
|
);
|
|
vectorField& pointNormals = tpointNormals.ref();
|
|
|
|
const pointField& points = surf.points();
|
|
const labelListList& pointFaces = surf.pointFaces();
|
|
const labelList& meshPoints = surf.meshPoints();
|
|
|
|
forAll(pointFaces, pI)
|
|
{
|
|
const labelList& pFaces = pointFaces[pI];
|
|
|
|
forAll(pFaces, fI)
|
|
{
|
|
const label faceI = pFaces[fI];
|
|
const triFace& f = surf[faceI];
|
|
|
|
vector fN = f.normal(points);
|
|
|
|
scalar weight = calcVertexNormalWeight
|
|
(
|
|
f,
|
|
meshPoints[pI],
|
|
fN,
|
|
points
|
|
);
|
|
|
|
pointNormals[pI] += weight*fN;
|
|
}
|
|
|
|
pointNormals[pI] /= mag(pointNormals[pI]) + VSMALL;
|
|
}
|
|
|
|
return tpointNormals;
|
|
}
|
|
|
|
|
|
tmp<vectorField> calcPointNormals
|
|
(
|
|
const triSurface& s,
|
|
const bitSet& isFeaturePoint,
|
|
const List<surfaceFeatures::edgeStatus>& edgeStat
|
|
)
|
|
{
|
|
//const pointField pointNormals(s.pointNormals());
|
|
tmp<vectorField> tpointNormals(calcVertexNormals(s));
|
|
vectorField& pointNormals = tpointNormals.ref();
|
|
|
|
|
|
// feature edges: create edge normals from edgeFaces only.
|
|
{
|
|
const labelListList& edgeFaces = s.edgeFaces();
|
|
|
|
labelList nNormals(s.nPoints(), 0);
|
|
forAll(edgeStat, edgeI)
|
|
{
|
|
if (edgeStat[edgeI] != surfaceFeatures::NONE)
|
|
{
|
|
const edge& e = s.edges()[edgeI];
|
|
forAll(e, i)
|
|
{
|
|
if (!isFeaturePoint.test(e[i]))
|
|
{
|
|
pointNormals[e[i]] = Zero;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
forAll(edgeStat, edgeI)
|
|
{
|
|
if (edgeStat[edgeI] != surfaceFeatures::NONE)
|
|
{
|
|
const labelList& eFaces = edgeFaces[edgeI];
|
|
|
|
// Get average edge normal
|
|
vector n = Zero;
|
|
forAll(eFaces, i)
|
|
{
|
|
n += s.faceNormals()[eFaces[i]];
|
|
}
|
|
n /= eFaces.size();
|
|
|
|
|
|
// Sum to points
|
|
const edge& e = s.edges()[edgeI];
|
|
forAll(e, i)
|
|
{
|
|
if (!isFeaturePoint.test(e[i]))
|
|
{
|
|
pointNormals[e[i]] += n;
|
|
nNormals[e[i]]++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
forAll(nNormals, pointI)
|
|
{
|
|
if (nNormals[pointI] > 0)
|
|
{
|
|
pointNormals[pointI] /= mag(pointNormals[pointI]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
forAll(pointNormals, pointI)
|
|
{
|
|
if (mag(mag(pointNormals[pointI])-1) > SMALL)
|
|
{
|
|
FatalErrorInFunction
|
|
<< "unitialised"
|
|
<< exit(FatalError);
|
|
}
|
|
}
|
|
|
|
return tpointNormals;
|
|
}
|
|
|
|
|
|
void detectSelfIntersections
|
|
(
|
|
const triSurfaceMesh& s,
|
|
bitSet& isEdgeIntersecting
|
|
)
|
|
{
|
|
const edgeList& edges = s.edges();
|
|
const indexedOctree<treeDataTriSurface>& tree = s.tree();
|
|
const labelList& meshPoints = s.meshPoints();
|
|
const pointField& points = s.points();
|
|
|
|
isEdgeIntersecting.setSize(edges.size());
|
|
isEdgeIntersecting = false;
|
|
|
|
forAll(edges, edgeI)
|
|
{
|
|
const edge& e = edges[edgeI];
|
|
|
|
pointIndexHit hitInfo
|
|
(
|
|
tree.findLine
|
|
(
|
|
points[meshPoints[e[0]]],
|
|
points[meshPoints[e[1]]],
|
|
treeDataTriSurface::findSelfIntersectOp(tree, edgeI)
|
|
)
|
|
);
|
|
|
|
if (hitInfo.hit())
|
|
{
|
|
isEdgeIntersecting.set(edgeI);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
label detectIntersectionPoints
|
|
(
|
|
const scalar tolerance,
|
|
const triSurfaceMesh& s,
|
|
|
|
const scalar extendFactor,
|
|
const pointField& initialPoints,
|
|
const vectorField& displacement,
|
|
|
|
const bool checkSelfIntersect,
|
|
const bitSet& initialIsEdgeIntersecting,
|
|
|
|
bitSet& isPointOnHitEdge,
|
|
scalarField& scale
|
|
)
|
|
{
|
|
const pointField initialLocalPoints(initialPoints, s.meshPoints());
|
|
const List<labelledTri>& localFaces = s.localFaces();
|
|
|
|
|
|
label nHits = 0;
|
|
isPointOnHitEdge.setSize(s.nPoints());
|
|
isPointOnHitEdge = false;
|
|
|
|
|
|
// 1. Extrusion offset vectors intersecting new surface location
|
|
{
|
|
scalar tol = max(tolerance, 10*s.tolerance());
|
|
|
|
// Collect all the edge vectors. Slightly shorten the edges to prevent
|
|
// finding lots of intersections. The fast triangle intersection routine
|
|
// has problems with rays passing through a point of the
|
|
// triangle.
|
|
pointField start(initialLocalPoints+tol*displacement);
|
|
pointField end(initialLocalPoints+extendFactor*displacement);
|
|
|
|
List<pointIndexHit> hits;
|
|
s.findLineAny(start, end, hits);
|
|
|
|
forAll(hits, pointI)
|
|
{
|
|
if
|
|
(
|
|
hits[pointI].hit()
|
|
&& !localFaces[hits[pointI].index()].found(pointI)
|
|
)
|
|
{
|
|
scale[pointI] = max(0.0, scale[pointI]-0.2);
|
|
|
|
isPointOnHitEdge.set(pointI);
|
|
nHits++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// 2. (new) surface self intersections
|
|
if (checkSelfIntersect)
|
|
{
|
|
bitSet isEdgeIntersecting;
|
|
detectSelfIntersections(s, isEdgeIntersecting);
|
|
|
|
const edgeList& edges = s.edges();
|
|
const pointField& points = s.points();
|
|
|
|
forAll(edges, edgeI)
|
|
{
|
|
const edge& e = edges[edgeI];
|
|
|
|
if (isEdgeIntersecting[edgeI] && !initialIsEdgeIntersecting[edgeI])
|
|
{
|
|
if (isPointOnHitEdge.set(e[0]))
|
|
{
|
|
label start = s.meshPoints()[e[0]];
|
|
const point& pt = points[start];
|
|
|
|
Pout<< "Additional self intersection at "
|
|
<< pt
|
|
<< endl;
|
|
|
|
scale[e[0]] = max(0.0, scale[e[0]]-0.2);
|
|
nHits++;
|
|
}
|
|
if (isPointOnHitEdge.set(e[1]))
|
|
{
|
|
label end = s.meshPoints()[e[1]];
|
|
const point& pt = points[end];
|
|
|
|
Pout<< "Additional self intersection at "
|
|
<< pt
|
|
<< endl;
|
|
|
|
scale[e[1]] = max(0.0, scale[e[1]]-0.2);
|
|
nHits++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return nHits;
|
|
}
|
|
|
|
|
|
tmp<scalarField> avg
|
|
(
|
|
const triSurface& s,
|
|
const scalarField& fld,
|
|
const scalarField& edgeWeights
|
|
)
|
|
{
|
|
tmp<scalarField> tres(new scalarField(s.nPoints(), 0.0));
|
|
scalarField& res = tres.ref();
|
|
|
|
scalarField sumWeight(s.nPoints(), 0.0);
|
|
|
|
const edgeList& edges = s.edges();
|
|
|
|
forAll(edges, edgeI)
|
|
{
|
|
const edge& e = edges[edgeI];
|
|
const scalar w = edgeWeights[edgeI];
|
|
|
|
res[e[0]] += w*fld[e[1]];
|
|
sumWeight[e[0]] += w;
|
|
|
|
res[e[1]] += w*fld[e[0]];
|
|
sumWeight[e[1]] += w;
|
|
}
|
|
|
|
// Average
|
|
// ~~~~~~~
|
|
|
|
forAll(res, pointI)
|
|
{
|
|
if (mag(sumWeight[pointI]) < VSMALL)
|
|
{
|
|
// Unconnected point. Take over original value
|
|
res[pointI] = fld[pointI];
|
|
}
|
|
else
|
|
{
|
|
res[pointI] /= sumWeight[pointI];
|
|
}
|
|
}
|
|
|
|
return tres;
|
|
}
|
|
|
|
|
|
void minSmooth
|
|
(
|
|
const triSurface& s,
|
|
const bitSet& isAffectedPoint,
|
|
const scalarField& fld,
|
|
scalarField& newFld
|
|
)
|
|
{
|
|
|
|
const edgeList& edges = s.edges();
|
|
const pointField& points = s.points();
|
|
const labelList& mp = s.meshPoints();
|
|
|
|
scalarField edgeWeights(edges.size());
|
|
forAll(edges, edgeI)
|
|
{
|
|
const edge& e = edges[edgeI];
|
|
scalar w = mag(points[mp[e[0]]]-points[mp[e[1]]]);
|
|
|
|
edgeWeights[edgeI] = 1.0/(max(w, SMALL));
|
|
}
|
|
|
|
tmp<scalarField> tavgFld = avg(s, fld, edgeWeights);
|
|
|
|
const scalarField& avgFld = tavgFld();
|
|
|
|
forAll(fld, pointI)
|
|
{
|
|
if (isAffectedPoint.test(pointI))
|
|
{
|
|
newFld[pointI] = min
|
|
(
|
|
fld[pointI],
|
|
0.5*fld[pointI] + 0.5*avgFld[pointI]
|
|
//avgFld[pointI]
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void lloydsSmoothing
|
|
(
|
|
const label nSmooth,
|
|
triSurface& s,
|
|
const bitSet& isFeaturePoint,
|
|
const List<surfaceFeatures::edgeStatus>& edgeStat,
|
|
const bitSet& isAffectedPoint
|
|
)
|
|
{
|
|
const labelList& meshPoints = s.meshPoints();
|
|
const edgeList& edges = s.edges();
|
|
|
|
|
|
bitSet isSmoothPoint(isAffectedPoint);
|
|
// Extend isSmoothPoint
|
|
{
|
|
bitSet newIsSmoothPoint(isSmoothPoint);
|
|
forAll(edges, edgeI)
|
|
{
|
|
const edge& e = edges[edgeI];
|
|
if (isSmoothPoint.test(e[0]))
|
|
{
|
|
newIsSmoothPoint.set(e[1]);
|
|
}
|
|
if (isSmoothPoint.test(e[1]))
|
|
{
|
|
newIsSmoothPoint.set(e[0]);
|
|
}
|
|
}
|
|
Info<< "From points-to-smooth " << isSmoothPoint.count()
|
|
<< " to " << newIsSmoothPoint.count()
|
|
<< endl;
|
|
isSmoothPoint.transfer(newIsSmoothPoint);
|
|
}
|
|
|
|
// Do some smoothing (Lloyds algorithm) around problematic points
|
|
for (label i = 0; i < nSmooth; i++)
|
|
{
|
|
const labelListList& pointFaces = s.pointFaces();
|
|
const pointField& faceCentres = s.faceCentres();
|
|
|
|
pointField newPoints(s.points());
|
|
forAll(isSmoothPoint, pointI)
|
|
{
|
|
if (isSmoothPoint[pointI] && !isFeaturePoint[pointI])
|
|
{
|
|
const labelList& pFaces = pointFaces[pointI];
|
|
|
|
point avg(Zero);
|
|
forAll(pFaces, pFaceI)
|
|
{
|
|
avg += faceCentres[pFaces[pFaceI]];
|
|
}
|
|
avg /= pFaces.size();
|
|
newPoints[meshPoints[pointI]] = avg;
|
|
}
|
|
}
|
|
|
|
|
|
// Move points on feature edges only according to feature edges.
|
|
|
|
const pointField& points = s.points();
|
|
|
|
vectorField pointSum(s.nPoints(), Zero);
|
|
labelList nPointSum(s.nPoints(), 0);
|
|
|
|
forAll(edges, edgeI)
|
|
{
|
|
if (edgeStat[edgeI] != surfaceFeatures::NONE)
|
|
{
|
|
const edge& e = edges[edgeI];
|
|
const point& start = points[meshPoints[e[0]]];
|
|
const point& end = points[meshPoints[e[1]]];
|
|
point eMid = 0.5*(start+end);
|
|
pointSum[e[0]] += eMid;
|
|
nPointSum[e[0]]++;
|
|
pointSum[e[1]] += eMid;
|
|
nPointSum[e[1]]++;
|
|
}
|
|
}
|
|
|
|
forAll(pointSum, pointI)
|
|
{
|
|
if
|
|
(
|
|
isSmoothPoint[pointI]
|
|
&& isFeaturePoint[pointI]
|
|
&& nPointSum[pointI] >= 2
|
|
)
|
|
{
|
|
newPoints[meshPoints[pointI]] =
|
|
pointSum[pointI]/nPointSum[pointI];
|
|
}
|
|
}
|
|
|
|
|
|
s.movePoints(newPoints);
|
|
|
|
|
|
// Extend isSmoothPoint
|
|
{
|
|
bitSet newIsSmoothPoint(isSmoothPoint);
|
|
forAll(edges, edgeI)
|
|
{
|
|
const edge& e = edges[edgeI];
|
|
if (isSmoothPoint[e[0]])
|
|
{
|
|
newIsSmoothPoint.set(e[1]);
|
|
}
|
|
if (isSmoothPoint[e[1]])
|
|
{
|
|
newIsSmoothPoint.set(e[0]);
|
|
}
|
|
}
|
|
Info<< "From points-to-smooth " << isSmoothPoint.count()
|
|
<< " to " << newIsSmoothPoint.count()
|
|
<< endl;
|
|
isSmoothPoint.transfer(newIsSmoothPoint);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Main program:
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
argList::addNote("Inflates surface according to point normals.");
|
|
|
|
argList::noParallel();
|
|
argList::addNote
|
|
(
|
|
"Creates inflated version of surface using point normals."
|
|
" Takes surface, distance to inflate and additional safety factor"
|
|
);
|
|
argList::addBoolOption
|
|
(
|
|
"checkSelfIntersection",
|
|
"also check for self-intersection"
|
|
);
|
|
argList::addOption
|
|
(
|
|
"nSmooth",
|
|
"integer",
|
|
"number of smoothing iterations (default 20)"
|
|
);
|
|
argList::addOption
|
|
(
|
|
"featureAngle",
|
|
"scalar",
|
|
"feature angle"
|
|
);
|
|
argList::addBoolOption
|
|
(
|
|
"debug",
|
|
"switch on additional debug information"
|
|
);
|
|
|
|
argList::addArgument("inputFile");
|
|
argList::addArgument("distance");
|
|
argList::addArgument("safety factor [1..]");
|
|
|
|
#include "setRootCase.H"
|
|
#include "createTime.H"
|
|
runTime.functionObjects().off();
|
|
|
|
const word inputName(args[1]);
|
|
const scalar distance(args.read<scalar>(2));
|
|
const scalar extendFactor(args.read<scalar>(3));
|
|
const bool checkSelfIntersect = args.found("checkSelfIntersection");
|
|
const label nSmooth = args.lookupOrDefault("nSmooth", 10);
|
|
const scalar featureAngle = args.lookupOrDefault<scalar>
|
|
(
|
|
"featureAngle",
|
|
180
|
|
);
|
|
const bool debug = args.found("debug");
|
|
|
|
|
|
Info<< "Inflating surface " << inputName
|
|
<< " according to point normals" << nl
|
|
<< " distance : " << distance << nl
|
|
<< " safety factor : " << extendFactor << nl
|
|
<< " self intersection test : " << checkSelfIntersect << nl
|
|
<< " smoothing iterations : " << nSmooth << nl
|
|
<< " feature angle : " << featureAngle << nl
|
|
<< endl;
|
|
|
|
|
|
if (extendFactor < 1 || extendFactor > 10)
|
|
{
|
|
FatalErrorInFunction
|
|
<< "Illegal safety factor " << extendFactor
|
|
<< ". It is usually 1..2"
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
|
|
|
|
// Load triSurfaceMesh
|
|
triSurfaceMesh s
|
|
(
|
|
IOobject
|
|
(
|
|
inputName, // name
|
|
runTime.constant(), // instance
|
|
"triSurface", // local
|
|
runTime, // registry
|
|
IOobject::MUST_READ,
|
|
IOobject::AUTO_WRITE
|
|
)
|
|
);
|
|
|
|
// Mark features
|
|
const surfaceFeatures features(s, 180.0-featureAngle);
|
|
|
|
Info<< "Detected features:" << nl
|
|
<< " feature points : " << features.featurePoints().size()
|
|
<< " out of " << s.nPoints() << nl
|
|
<< " feature edges : " << features.featureEdges().size()
|
|
<< " out of " << s.nEdges() << nl
|
|
<< endl;
|
|
|
|
bitSet isFeaturePoint(s.nPoints(), features.featurePoints());
|
|
|
|
const List<surfaceFeatures::edgeStatus> edgeStat(features.toStatus());
|
|
|
|
|
|
const pointField initialPoints(s.points());
|
|
|
|
|
|
// Construct scale
|
|
Info<< "Constructing field scale\n" << endl;
|
|
triSurfacePointScalarField scale
|
|
(
|
|
IOobject
|
|
(
|
|
"scale", // name
|
|
runTime.timeName(), // instance
|
|
s, // registry
|
|
IOobject::READ_IF_PRESENT,
|
|
IOobject::AUTO_WRITE
|
|
),
|
|
s,
|
|
dimensionedScalar("scale", dimLength, 1.0)
|
|
);
|
|
|
|
|
|
// Construct unit normals
|
|
|
|
Info<< "Calculating vertex normals\n" << endl;
|
|
const pointField pointNormals
|
|
(
|
|
calcPointNormals
|
|
(
|
|
s,
|
|
isFeaturePoint,
|
|
edgeStat
|
|
)
|
|
);
|
|
|
|
|
|
// Construct pointDisplacement
|
|
Info<< "Constructing field pointDisplacement\n" << endl;
|
|
triSurfacePointVectorField pointDisplacement
|
|
(
|
|
IOobject
|
|
(
|
|
"pointDisplacement", // name
|
|
runTime.timeName(), // instance
|
|
s, // registry
|
|
IOobject::NO_READ,
|
|
IOobject::AUTO_WRITE
|
|
),
|
|
s,
|
|
dimLength,
|
|
distance*scale*pointNormals
|
|
);
|
|
|
|
|
|
const labelList& meshPoints = s.meshPoints();
|
|
|
|
|
|
// Any point on any intersected edge in any of the iterations
|
|
bitSet isScaledPoint(s.nPoints());
|
|
|
|
|
|
// Detect any self intersections on initial mesh
|
|
bitSet initialIsEdgeIntersecting;
|
|
if (checkSelfIntersect)
|
|
{
|
|
detectSelfIntersections(s, initialIsEdgeIntersecting);
|
|
}
|
|
else
|
|
{
|
|
// Mark all edges as already self intersecting so avoid detecting any
|
|
// new ones
|
|
initialIsEdgeIntersecting.setSize(s.nEdges(), true);
|
|
}
|
|
|
|
|
|
// Inflate
|
|
while (runTime.loop())
|
|
{
|
|
Info<< "Time = " << runTime.timeName() << nl << endl;
|
|
|
|
// Move to new location
|
|
pointField newPoints(initialPoints);
|
|
forAll(meshPoints, i)
|
|
{
|
|
newPoints[meshPoints[i]] += pointDisplacement[i];
|
|
}
|
|
s.movePoints(newPoints);
|
|
Info<< "Bounding box : " << s.bounds() << endl;
|
|
|
|
|
|
// Work out scale from pointDisplacement
|
|
forAll(scale, pointI)
|
|
{
|
|
if (s.pointFaces()[pointI].size())
|
|
{
|
|
scale[pointI] = mag(pointDisplacement[pointI])/distance;
|
|
}
|
|
else
|
|
{
|
|
scale[pointI] = 1.0;
|
|
}
|
|
}
|
|
|
|
|
|
Info<< "Scale : " << gAverage(scale) << endl;
|
|
Info<< "Displacement : " << gAverage(pointDisplacement) << endl;
|
|
|
|
|
|
|
|
// Detect any intersections and scale back
|
|
bitSet isAffectedPoint;
|
|
label nIntersections = detectIntersectionPoints
|
|
(
|
|
1e-9, // intersection tolerance
|
|
s,
|
|
extendFactor,
|
|
initialPoints,
|
|
pointDisplacement,
|
|
|
|
checkSelfIntersect,
|
|
initialIsEdgeIntersecting,
|
|
|
|
isAffectedPoint,
|
|
scale
|
|
);
|
|
Info<< "Detected " << nIntersections << " intersections" << nl
|
|
<< endl;
|
|
|
|
if (nIntersections == 0)
|
|
{
|
|
runTime.write();
|
|
break;
|
|
}
|
|
|
|
|
|
// Accumulate all affected points
|
|
forAll(isAffectedPoint, pointI)
|
|
{
|
|
if (isAffectedPoint.test(pointI))
|
|
{
|
|
isScaledPoint.set(pointI);
|
|
}
|
|
}
|
|
|
|
// Smear out lowering of scale so any edges not found are
|
|
// still included
|
|
for (label i = 0; i < nSmooth; i++)
|
|
{
|
|
triSurfacePointScalarField oldScale(scale);
|
|
oldScale.rename("oldScale");
|
|
minSmooth
|
|
(
|
|
s,
|
|
bitSet(s.nPoints(), true),
|
|
oldScale,
|
|
scale
|
|
);
|
|
}
|
|
|
|
|
|
// From scale update the pointDisplacement
|
|
pointDisplacement *= distance*scale/mag(pointDisplacement);
|
|
|
|
|
|
// Do some smoothing (Lloyds algorithm)
|
|
lloydsSmoothing(nSmooth, s, isFeaturePoint, edgeStat, isAffectedPoint);
|
|
|
|
|
|
// Update pointDisplacement
|
|
const pointField& pts = s.points();
|
|
forAll(meshPoints, i)
|
|
{
|
|
label meshPointI = meshPoints[i];
|
|
pointDisplacement[i] = pts[meshPointI]-initialPoints[meshPointI];
|
|
}
|
|
|
|
|
|
// Write
|
|
runTime.write();
|
|
|
|
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
|
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
|
<< nl << endl;
|
|
}
|
|
|
|
|
|
Info<< "Detected overall intersecting points " << isScaledPoint.count()
|
|
<< " out of " << s.nPoints() << nl << endl;
|
|
|
|
|
|
if (debug)
|
|
{
|
|
OBJstream str(runTime.path()/"isScaledPoint.obj");
|
|
forAll(isScaledPoint, pointI)
|
|
{
|
|
if (isScaledPoint[pointI])
|
|
{
|
|
str.write(initialPoints[meshPoints[pointI]]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Info << "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|