openfoam/applications/solvers/combustion/PDRFoam/PDRModels/dragModels/PDRDragModel/PDRDragModel.H
Henry 2aec249647 Updated the whole of OpenFOAM to use the new templated TurbulenceModels library
The old separate incompressible and compressible libraries have been removed.

Most of the commonly used RANS and LES models have been upgraded to the
new framework but there are a few missing which will be added over the
next few days, in particular the realizable k-epsilon model.  Some of
the less common incompressible RANS models have been introduced into the
new library instantiated for incompressible flow only.  If they prove to
be generally useful they can be templated for compressible and
multiphase application.

The Spalart-Allmaras DDES and IDDES models have been thoroughly
debugged, removing serious errors concerning the use of S rather than
Omega.

The compressible instances of the models have been augmented by a simple
backward-compatible eddyDiffusivity model for thermal transport based on
alphat and alphaEff.  This will be replaced with a separate run-time
selectable thermal transport model framework in a few weeks.

For simplicity and ease of maintenance and further development the
turbulent transport and wall modeling is based on nut/nuEff rather than
mut/muEff for compressible models so that all forms of turbulence models
can use the same wall-functions and other BCs.

All turbulence model selection made in the constant/turbulenceProperties
dictionary with RAS and LES as sub-dictionaries rather than in separate
files which added huge complexity for multiphase.

All tutorials have been updated so study the changes and update your own
cases by comparison with similar cases provided.

Sorry for the inconvenience in the break in backward-compatibility but
this update to the turbulence modeling is an essential step in the
future of OpenFOAM to allow more models to be added and maintained for a
wider range of cases and physics.  Over the next weeks and months more
turbulence models will be added of single and multiphase flow, more
additional sub-models and further development and testing of existing
models.  I hope this brings benefits to all OpenFOAM users.

Henry G. Weller
2015-01-21 19:21:39 +00:00

182 lines
4.7 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::PDRDragModel
Description
Base-class for sub-grid obstacle drag models. The available drag model is at
\link basic.H \endlink.
SourceFiles
PDRDragModel.C
\*---------------------------------------------------------------------------*/
#ifndef PDRDragModel_H
#define PDRDragModel_H
#include "IOdictionary.H"
#include "psiuReactionThermo.H"
#include "turbulentFluidThermoModel.H"
#include "multivariateSurfaceInterpolationScheme.H"
#include "runTimeSelectionTables.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Class PDRDragModel Declaration
\*---------------------------------------------------------------------------*/
class PDRDragModel
:
public regIOobject
{
protected:
// Protected data
dictionary PDRDragModelCoeffs_;
const compressible::RASModel& turbulence_;
const volScalarField& rho_;
const volVectorField& U_;
const surfaceScalarField& phi_;
Switch on_;
private:
// Private Member Functions
//- Disallow copy construct
PDRDragModel(const PDRDragModel&);
//- Disallow default bitwise assignment
void operator=(const PDRDragModel&);
public:
//- Runtime type information
TypeName("PDRDragModel");
// Declare run-time constructor selection table
declareRunTimeSelectionTable
(
autoPtr,
PDRDragModel,
dictionary,
(
const dictionary& PDRProperties,
const compressible::RASModel& turbulence,
const volScalarField& rho,
const volVectorField& U,
const surfaceScalarField& phi
),
(
PDRProperties,
turbulence,
rho,
U,
phi
)
);
// Selectors
//- Return a reference to the selected Xi model
static autoPtr<PDRDragModel> New
(
const dictionary& PDRProperties,
const compressible::RASModel& turbulence,
const volScalarField& rho,
const volVectorField& U,
const surfaceScalarField& phi
);
// Constructors
//- Construct from components
PDRDragModel
(
const dictionary& PDRProperties,
const compressible::RASModel& turbulence,
const volScalarField& rho,
const volVectorField& U,
const surfaceScalarField& phi
);
//- Destructor
virtual ~PDRDragModel();
// Member Functions
//- Return true if the drag model is switched on
bool on() const
{
return on_;
}
//- Return the momentum drag coefficient
virtual tmp<volSymmTensorField> Dcu() const = 0;
//- Return the momentum drag turbulence generation rate
virtual tmp<volScalarField> Gk() const = 0;
//- Update properties from given dictionary
virtual bool read(const dictionary& PDRProperties) = 0;
virtual bool writeData(Ostream&) const
{
return true;
}
virtual void writeFields() const
{
notImplemented("PDRDragModel::write()");
}
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //