openfoam/applications/solvers/multiphase/MPPICInterFoam/createFields.H
Mark Olesen 8eddcc072a ENH: avoid readScalar, readLabel etc from dictionary (#762, #1033)
- use the dictionary 'get' methods instead of readScalar for
  additional checking

     Unchecked:  readScalar(dict.lookup("key"));
     Checked:    dict.get<scalar>("key");

- In templated classes that also inherit from a dictionary, an additional
  'template' keyword will be required. Eg,

     this->coeffsDict().template get<scalar>("key");

  For this common use case, the predefined getXXX shortcuts may be
  useful. Eg,

     this->coeffsDict().getScalar("key");
2018-10-12 08:14:47 +02:00

204 lines
3.6 KiB
C

#include "createRDeltaT.H"
Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "createPhi.H"
Info<< "Reading transportProperties\n" << endl;
immiscibleIncompressibleTwoPhaseMixture mixture(U, phi);
volScalarField& alpha1(mixture.alpha1());
volScalarField& alpha2(mixture.alpha2());
const dimensionedScalar& rho1 = mixture.rho1();
const dimensionedScalar& rho2 = mixture.rho2();
// Need to store rho for ddt(rho, U)
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
alpha1*rho1 + alpha2*rho2
);
rho.oldTime();
// Need to store mu as incompressibleTwoPhaseMixture does not store it
volScalarField mu
(
IOobject
(
"mu",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT
),
mixture.mu(),
calculatedFvPatchScalarField::typeName
);
// Mass flux
surfaceScalarField rhoPhi
(
IOobject
(
"rhoPhi",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
fvc::interpolate(rho)*phi
);
#include "readGravitationalAcceleration.H"
#include "readhRef.H"
#include "gh.H"
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
p_rgh + rho*gh
);
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(
p,
p_rgh,
mesh.solutionDict().subDict("PIMPLE"),
pRefCell,
pRefValue
);
if (p_rgh.needReference())
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
p_rgh = p - rho*gh;
}
mesh.setFluxRequired(p_rgh.name());
mesh.setFluxRequired(alpha1.name());
// alphac must be constructed before the cloud
// so that the drag-models can find it
volScalarField alphac
(
IOobject
(
"alphac",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar(dimless, Zero),
zeroGradientFvPatchScalarField::typeName
);
alphac.oldTime();
volScalarField alphacRho(alphac*rho);
alphacRho.oldTime();
Info<< "Constructing kinematicCloud " << endl;
basicKinematicMPPICCloud kinematicCloud
(
"kinematicCloud",
rho,
U,
mu,
g
);
// Particle fraction upper limit
scalar alphacMin
(
1.0
- (
kinematicCloud.particleProperties().subDict("constantProperties")
.get<scalar>("alphaMax")
)
);
// Update alphac from the particle locations
alphac = max(1.0 - kinematicCloud.theta(), alphacMin);
alphac.correctBoundaryConditions();
surfaceScalarField alphacf("alphacf", fvc::interpolate(alphac));
// Phase mass flux
surfaceScalarField alphaRhoPhic("alphaRhoPhic", alphacf*rhoPhi);
// Volumetric phase flux
surfaceScalarField alphaPhic("alphaPhic", alphacf*phi);
autoPtr
<
PhaseCompressibleTurbulenceModel
<
immiscibleIncompressibleTwoPhaseMixture
>
>turbulence
(
PhaseCompressibleTurbulenceModel
<
immiscibleIncompressibleTwoPhaseMixture
>::New
(
alphac,
rho,
U,
alphaRhoPhic,
rhoPhi,
mixture
)
);
#include "createMRF.H"