openfoam/applications/solvers/multiphase/reactingEulerFoam/functionObjects/phaseForces/phaseForces.C
2019-06-25 11:51:19 +01:00

307 lines
8.6 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2018-2019 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "phaseForces.H"
#include "addToRunTimeSelectionTable.H"
#include "BlendedInterfacialModel.H"
#include "dragModel.H"
#include "virtualMassModel.H"
#include "liftModel.H"
#include "wallLubricationModel.H"
#include "turbulentDispersionModel.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace functionObjects
{
defineTypeNameAndDebug(phaseForces, 0);
addToRunTimeSelectionTable(functionObject, phaseForces, dictionary);
}
}
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * * //
template<class modelType>
Foam::tmp<Foam::volVectorField>
Foam::functionObjects::phaseForces::nonDragForce(const phasePair& pair) const
{
const BlendedInterfacialModel<modelType>& model =
fluid_.lookupBlendedSubModel<modelType>(pair);
if (&pair.phase1() == &phase_)
{
return model.template F<vector>();
}
else
{
return -model.template F<vector>();
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::functionObjects::phaseForces::phaseForces
(
const word& name,
const Time& runTime,
const dictionary& dict
)
:
fvMeshFunctionObject(name, runTime, dict),
phase_
(
mesh_.lookupObject<phaseModel>
(
IOobject::groupName("alpha", dict.get<word>("phase"))
)
),
fluid_(mesh_.lookupObject<phaseSystem>("phaseProperties"))
{
read(dict);
forAllConstIter
(
phaseSystem::phasePairTable,
fluid_.phasePairs(),
iter
)
{
const phasePair& pair = iter();
if (pair.contains(phase_) && !pair.ordered())
{
if (fluid_.foundBlendedSubModel<dragModel>(pair))
{
forceFields_.set
(
dragModel::typeName,
new volVectorField
(
IOobject
(
IOobject::groupName("dragForce", phase_.name()),
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedVector(dimForce/dimVolume)
)
);
}
if (fluid_.foundBlendedSubModel<virtualMassModel>(pair))
{
forceFields_.set
(
virtualMassModel::typeName,
new volVectorField
(
IOobject
(
IOobject::groupName
(
"virtualMassForce",
phase_.name()
),
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedVector(dimForce/dimVolume)
)
);
}
if (fluid_.foundBlendedSubModel<liftModel>(pair))
{
forceFields_.set
(
liftModel::typeName,
new volVectorField
(
IOobject
(
IOobject::groupName("liftForce", phase_.name()),
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedVector(dimForce/dimVolume)
)
);
}
if (fluid_.foundBlendedSubModel<wallLubricationModel>(pair))
{
forceFields_.set
(
wallLubricationModel::typeName,
new volVectorField
(
IOobject
(
IOobject::groupName
(
"wallLubricationForce",
phase_.name()
),
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedVector(dimForce/dimVolume)
)
);
}
if (fluid_.foundBlendedSubModel<turbulentDispersionModel>(pair))
{
forceFields_.set
(
turbulentDispersionModel::typeName,
new volVectorField
(
IOobject
(
IOobject::groupName
(
"turbulentDispersionForce",
phase_.name()
),
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedVector(dimForce/dimVolume)
)
);
}
}
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::functionObjects::phaseForces::~phaseForces()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::functionObjects::phaseForces::read(const dictionary& dict)
{
fvMeshFunctionObject::read(dict);
return true;
}
bool Foam::functionObjects::phaseForces::execute()
{
forAllIter
(
HashPtrTable<volVectorField>,
forceFields_,
iter
)
{
const word& type = iter.key();
volVectorField& force = *iter();
force *= 0.0;
forAllConstIter
(
phaseSystem::phasePairTable,
fluid_.phasePairs(),
iter2
)
{
const phasePair& pair = iter2();
if (pair.contains(phase_) && !pair.ordered())
{
if (type == "dragModel")
{
force +=
fluid_.lookupBlendedSubModel<dragModel>(pair).K()
*(pair.otherPhase(phase_).U() - phase_.U());
}
if (type == "virtualMassModel")
{
force +=
fluid_.lookupBlendedSubModel<virtualMassModel>(pair).K()
*(
pair.otherPhase(phase_).DUDt()
- phase_.DUDt()
);
}
if (type == "liftModel")
{
force = nonDragForce<liftModel>(pair);
}
if (type == "wallLubricationModel")
{
force = nonDragForce<wallLubricationModel>(pair);
}
if (type == "turbulentDispersionModel")
{
force = nonDragForce<turbulentDispersionModel>(pair);
}
}
}
}
return true;
}
bool Foam::functionObjects::phaseForces::write()
{
forAllIter
(
HashPtrTable<volVectorField>,
forceFields_,
iter
)
{
writeObject(iter()->name());
}
return true;
}
// ************************************************************************* //