openfoam/applications/utilities/postProcessing/miscellaneous/postChannel/channelIndex.C

294 lines
7.5 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "channelIndex.H"
#include "boolList.H"
#include "syncTools.H"
#include "OFstream.H"
#include "meshTools.H"
#include "Time.H"
#include "SortableList.H"
// * * * * * * * * * * * * * Static Member Data * * * * * * * * * * * * * * //
namespace Foam
{
template<>
const char* Foam::NamedEnum
<
Foam::vector::components,
3
>::names[] =
{
"x",
"y",
"z"
};
}
const Foam::NamedEnum<Foam::vector::components, 3>
Foam::channelIndex::vectorComponentsNames_;
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
// Determines face blocking
void Foam::channelIndex::walkOppositeFaces
(
const polyMesh& mesh,
const labelList& startFaces,
boolList& blockedFace
)
{
const cellList& cells = mesh.cells();
const faceList& faces = mesh.faces();
label nBnd = mesh.nFaces() - mesh.nInternalFaces();
DynamicList<label> frontFaces(startFaces);
forAll(frontFaces, i)
{
label facei = frontFaces[i];
blockedFace[facei] = true;
}
while (returnReduce(frontFaces.size(), sumOp<label>()) > 0)
{
// Transfer across.
boolList isFrontBndFace(nBnd, false);
forAll(frontFaces, i)
{
label facei = frontFaces[i];
if (!mesh.isInternalFace(facei))
{
isFrontBndFace[facei-mesh.nInternalFaces()] = true;
}
}
syncTools::swapBoundaryFaceList(mesh, isFrontBndFace);
// Add
forAll(isFrontBndFace, i)
{
label facei = mesh.nInternalFaces()+i;
if (isFrontBndFace[i] && !blockedFace[facei])
{
blockedFace[facei] = true;
frontFaces.append(facei);
}
}
// Transfer across cells
DynamicList<label> newFrontFaces(frontFaces.size());
forAll(frontFaces, i)
{
label facei = frontFaces[i];
{
const cell& ownCell = cells[mesh.faceOwner()[facei]];
label oppositeFacei = ownCell.opposingFaceLabel(facei, faces);
if (oppositeFacei == -1)
{
FatalErrorInFunction
<< "Face:" << facei << " owner cell:" << ownCell
<< " is not a hex?" << abort(FatalError);
}
else
{
if (!blockedFace[oppositeFacei])
{
blockedFace[oppositeFacei] = true;
newFrontFaces.append(oppositeFacei);
}
}
}
if (mesh.isInternalFace(facei))
{
const cell& neiCell = mesh.cells()[mesh.faceNeighbour()[facei]];
label oppositeFacei = neiCell.opposingFaceLabel(facei, faces);
if (oppositeFacei == -1)
{
FatalErrorInFunction
<< "Face:" << facei << " neighbour cell:" << neiCell
<< " is not a hex?" << abort(FatalError);
}
else
{
if (!blockedFace[oppositeFacei])
{
blockedFace[oppositeFacei] = true;
newFrontFaces.append(oppositeFacei);
}
}
}
}
frontFaces.transfer(newFrontFaces);
}
}
// Calculate regions.
void Foam::channelIndex::calcLayeredRegions
(
const polyMesh& mesh,
const labelList& startFaces
)
{
boolList blockedFace(mesh.nFaces(), false);
walkOppositeFaces
(
mesh,
startFaces,
blockedFace
);
if (false)
{
OFstream str(mesh.time().path()/"blockedFaces.obj");
label vertI = 0;
forAll(blockedFace, facei)
{
if (blockedFace[facei])
{
const face& f = mesh.faces()[facei];
forAll(f, fp)
{
meshTools::writeOBJ(str, mesh.points()[f[fp]]);
}
str<< 'f';
forAll(f, fp)
{
str << ' ' << vertI+fp+1;
}
str << nl;
vertI += f.size();
}
}
}
// Do analysis for connected regions
cellRegion_.reset(new regionSplit(mesh, blockedFace));
Info<< "Detected " << cellRegion_().nRegions() << " layers." << nl << endl;
// Sum number of entries per region
regionCount_ = regionSum(scalarField(mesh.nCells(), 1.0));
// Average cell centres to determine ordering.
pointField regionCc
(
regionSum(mesh.cellCentres())
/ regionCount_
);
SortableList<scalar> sortComponent(regionCc.component(dir_));
sortMap_ = sortComponent.indices();
y_ = sortComponent;
if (symmetric_)
{
y_.setSize(cellRegion_().nRegions()/2);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::channelIndex::channelIndex
(
const polyMesh& mesh,
const dictionary& dict
)
:
symmetric_(readBool(dict.lookup("symmetric"))),
dir_(vectorComponentsNames_.read(dict.lookup("component")))
{
const polyBoundaryMesh& patches = mesh.boundaryMesh();
const wordList patchNames(dict.lookup("patches"));
label nFaces = 0;
forAll(patchNames, i)
{
const label patchi = patches.findPatchID(patchNames[i]);
if (patchi == -1)
{
FatalErrorInFunction
<< "Illegal patch " << patchNames[i]
<< ". Valid patches are " << patches.name()
<< exit(FatalError);
}
nFaces += patches[patchi].size();
}
labelList startFaces(nFaces);
nFaces = 0;
forAll(patchNames, i)
{
const polyPatch& pp = patches[patchNames[i]];
forAll(pp, j)
{
startFaces[nFaces++] = pp.start()+j;
}
}
// Calculate regions.
calcLayeredRegions(mesh, startFaces);
}
Foam::channelIndex::channelIndex
(
const polyMesh& mesh,
const labelList& startFaces,
const bool symmetric,
const direction dir
)
:
symmetric_(symmetric),
dir_(dir)
{
// Calculate regions.
calcLayeredRegions(mesh, startFaces);
}
// ************************************************************************* //