openfoam/applications/solvers/multiphase/twoPhaseEulerFoam/pEqn.H
2012-02-29 16:39:53 +00:00

111 lines
2.8 KiB
C

{
surfaceScalarField alpha1f(fvc::interpolate(alpha1));
surfaceScalarField alpha2f(scalar(1) - alpha1f);
volScalarField rAU1(1.0/U1Eqn.A());
volScalarField rAU2(1.0/U2Eqn.A());
rAU1f = fvc::interpolate(rAU1);
surfaceScalarField rAU2f(fvc::interpolate(rAU2));
volVectorField HbyA1("HbyA1", U1);
HbyA1 = rAU1*U1Eqn.H();
volVectorField HbyA2("HbyA2", U2);
HbyA2 = rAU2*U2Eqn.H();
surfaceScalarField phiDrag1
(
fvc::interpolate(alpha2/rho1*K*rAU1)*phi2 + rAU1f*(g & mesh.Sf())
);
if (g0.value() > 0.0)
{
phiDrag1 -= ppMagf*fvc::snGrad(alpha1)*mesh.magSf();
}
if (kineticTheory.on())
{
phiDrag1 -= rAU1f*fvc::snGrad(kineticTheory.pa()/rho1)*mesh.magSf();
}
surfaceScalarField phiDrag2
(
fvc::interpolate(alpha1/rho2*K*rAU2)*phi1 + rAU2f*(g & mesh.Sf())
);
// Fix for gravity on outlet boundary.
forAll(p.boundaryField(), patchi)
{
if (isA<zeroGradientFvPatchScalarField>(p.boundaryField()[patchi]))
{
phiDrag1.boundaryField()[patchi] = 0.0;
phiDrag2.boundaryField()[patchi] = 0.0;
}
}
surfaceScalarField phiHbyA1
(
"phiHbyA1",
(fvc::interpolate(HbyA1) & mesh.Sf())
+ fvc::ddtPhiCorr(rAU1, U1, phi1)
+ phiDrag1
);
surfaceScalarField phiHbyA2
(
"phiHbyA2",
(fvc::interpolate(HbyA2) & mesh.Sf())
+ fvc::ddtPhiCorr(rAU2, U2, phi2)
+ phiDrag2
);
surfaceScalarField phiHbyA("phiHbyA", alpha1f*phiHbyA1 + alpha2f*phiHbyA2);
surfaceScalarField Dp
(
"Dp",
alpha1f*rAU1f/rho1 + alpha2f*rAU2f/rho2
);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::laplacian(Dp, p) == fvc::div(phiHbyA)
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
surfaceScalarField SfGradp(pEqn.flux()/Dp);
phi1.boundaryField() ==
(fvc::interpolate(U1) & mesh.Sf())().boundaryField();
phi1 = phiHbyA1 - rAU1f*SfGradp/rho1;
phi2.boundaryField() ==
(fvc::interpolate(U2) & mesh.Sf())().boundaryField();
phi2 = phiHbyA2 - rAU2f*SfGradp/rho2;
phi = alpha1f*phi1 + alpha2f*phi2;
p.relax();
SfGradp = pEqn.flux()/Dp;
U1 = HbyA1 + fvc::reconstruct(phiDrag1 - rAU1f*SfGradp/rho1);
U1.correctBoundaryConditions();
U2 = HbyA2 + fvc::reconstruct(phiDrag2 - rAU2f*SfGradp/rho2);
U2.correctBoundaryConditions();
U = alpha1*U1 + alpha2*U2;
}
}
}
#include "continuityErrs.H"