openfoam/applications/utilities/preProcessing/mapFieldsPar/mapLagrangian.C
Andrew Heather 2defba00a9 ENH: Lagrangian - provided backwards compatibility for cases using the
old "positions" file form

The change to barycentric-based tracking changed the contents of the
cloud "positions" file to a new format comprising the barycentric
co-ordinates and other cell position-based info.  This broke
backwards compatibility, providing no option to restart old cases
(v1706 and earlier), and caused difficulties for dependent code, e.g.
for post-processing utilities that could only infer the contents only
after reading.

The barycentric position info is now written to a file called
"coordinates" with provision to restart old cases for which only the
"positions" file is available. Related utilities, e.g. for parallel
running and data conversion have been updated to be able to support both
file types.

To write the "positions" file by default, use set the following option
in the InfoSwitches section of the controlDict:

    writeLagrangianPositions 1;
2017-09-13 13:13:36 +01:00

313 lines
9.8 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "MapLagrangianFields.H"
#include "passiveParticleCloud.H"
#include "meshSearch.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
static const scalar perturbFactor = 1e-6;
// Special version of findCell that generates a cell guaranteed to be
// compatible with tracking.
static label findCell(const Cloud<passiveParticle>& cloud, const point& pt)
{
label celli = -1;
label tetFacei = -1;
label tetPtI = -1;
const polyMesh& mesh = cloud.pMesh();
mesh.findCellFacePt(pt, celli, tetFacei, tetPtI);
if (celli >= 0)
{
return celli;
}
else
{
// See if particle on face by finding nearest face and shifting
// particle.
meshSearch meshSearcher
(
mesh,
polyMesh::FACE_PLANES // no decomposition needed
);
label facei = meshSearcher.findNearestBoundaryFace(pt);
if (facei >= 0)
{
const point& cc = mesh.cellCentres()[mesh.faceOwner()[facei]];
const point perturbPt = (1-perturbFactor)*pt+perturbFactor*cc;
mesh.findCellFacePt(perturbPt, celli, tetFacei, tetPtI);
return celli;
}
}
return -1;
}
void mapLagrangian(const meshToMesh& interp)
{
// Determine which particles are in meshTarget
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
const polyMesh& meshSource = interp.srcRegion();
const polyMesh& meshTarget = interp.tgtRegion();
const labelListList& sourceToTarget = interp.srcToTgtCellAddr();
fileNameList cloudDirs
(
readDir
(
meshSource.time().timePath()/cloud::prefix,
fileName::DIRECTORY
)
);
forAll(cloudDirs, cloudI)
{
// Search for list of lagrangian objects for this time
IOobjectList objects
(
meshSource,
meshSource.time().timeName(),
cloud::prefix/cloudDirs[cloudI]
);
bool foundPositions =
returnReduce(objects.found("positions"), orOp<bool>());;
bool foundCoordinates =
returnReduce(objects.found("coordinates"), orOp<bool>());;
if (foundPositions || foundCoordinates)
{
Info<< nl << " processing cloud " << cloudDirs[cloudI] << endl;
// Read positions & cell
passiveParticleCloud sourceParcels
(
meshSource,
cloudDirs[cloudI],
false
);
Info<< " read " << sourceParcels.size()
<< " parcels from source mesh." << endl;
// Construct empty target cloud
passiveParticleCloud targetParcels
(
meshTarget,
cloudDirs[cloudI],
IDLList<passiveParticle>()
);
passiveParticle::trackingData td(targetParcels);
label sourceParticleI = 0;
// Indices of source particles that get added to targetParcels
DynamicList<label> addParticles(sourceParcels.size());
// Unmapped particles
labelHashSet unmappedSource(sourceParcels.size());
// Initial: track from fine-mesh cell centre to particle position
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// This requires there to be no boundary in the way.
forAllConstIter(Cloud<passiveParticle>, sourceParcels, iter)
{
bool foundCell = false;
// Assume that cell from read parcel is the correct one...
if (iter().cell() >= 0)
{
const labelList& targetCells =
sourceToTarget[iter().cell()];
// Particle probably in one of the targetcells. Try
// all by tracking from their cell centre to the parcel
// position.
forAll(targetCells, i)
{
// Track from its cellcentre to position to make sure.
autoPtr<passiveParticle> newPtr
(
new passiveParticle
(
meshTarget,
barycentric(1, 0, 0, 0),
targetCells[i],
meshTarget.cells()[targetCells[i]][0],
1
)
);
passiveParticle& newP = newPtr();
newP.track(iter().position() - newP.position(), 0);
if (!newP.onFace())
{
// Hit position.
foundCell = true;
addParticles.append(sourceParticleI);
targetParcels.addParticle(newPtr.ptr());
break;
}
}
}
if (!foundCell)
{
// Store for closer analysis
unmappedSource.insert(sourceParticleI);
}
sourceParticleI++;
}
Info<< " after meshToMesh addressing found "
<< targetParcels.size()
<< " parcels in target mesh." << endl;
// Do closer inspection for unmapped particles
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if (unmappedSource.size())
{
sourceParticleI = 0;
forAllIter(Cloud<passiveParticle>, sourceParcels, iter)
{
if (unmappedSource.found(sourceParticleI))
{
label targetCell =
findCell(targetParcels, iter().position());
if (targetCell >= 0)
{
unmappedSource.erase(sourceParticleI);
addParticles.append(sourceParticleI);
targetParcels.addParticle
(
new passiveParticle
(
meshTarget,
iter().position(),
targetCell
)
);
sourceParcels.remove(&iter());
}
}
sourceParticleI++;
}
}
addParticles.shrink();
Info<< " after additional mesh searching found "
<< targetParcels.size() << " parcels in target mesh." << endl;
if (addParticles.size())
{
IOPosition<passiveParticleCloud>(targetParcels).write();
// addParticles now contains the indices of the sourceMesh
// particles that were appended to the target mesh.
// Map lagrangian fields
// ~~~~~~~~~~~~~~~~~~~~~
MapLagrangianFields<label>
(
cloudDirs[cloudI],
objects,
meshTarget,
addParticles
);
MapLagrangianFields<scalar>
(
cloudDirs[cloudI],
objects,
meshTarget,
addParticles
);
MapLagrangianFields<vector>
(
cloudDirs[cloudI],
objects,
meshTarget,
addParticles
);
MapLagrangianFields<sphericalTensor>
(
cloudDirs[cloudI],
objects,
meshTarget,
addParticles
);
MapLagrangianFields<symmTensor>
(
cloudDirs[cloudI],
objects,
meshTarget,
addParticles
);
MapLagrangianFields<tensor>
(
cloudDirs[cloudI],
objects,
meshTarget,
addParticles
);
}
}
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //