Original commit message: ------------------------ Parallel IO: New collated file format When an OpenFOAM simulation runs in parallel, the data for decomposed fields and mesh(es) has historically been stored in multiple files within separate directories for each processor. Processor directories are named 'processorN', where N is the processor number. This commit introduces an alternative "collated" file format where the data for each decomposed field (and mesh) is collated into a single file, which is written and read on the master processor. The files are stored in a single directory named 'processors'. The new format produces significantly fewer files - one per field, instead of N per field. For large parallel cases, this avoids the restriction on the number of open files imposed by the operating system limits. The file writing can be threaded allowing the simulation to continue running while the data is being written to file. NFS (Network File System) is not needed when using the the collated format and additionally, there is an option to run without NFS with the original uncollated approach, known as "masterUncollated". The controls for the file handling are in the OptimisationSwitches of etc/controlDict: OptimisationSwitches { ... //- Parallel IO file handler // uncollated (default), collated or masterUncollated fileHandler uncollated; //- collated: thread buffer size for queued file writes. // If set to 0 or not sufficient for the file size threading is not used. // Default: 2e9 maxThreadFileBufferSize 2e9; //- masterUncollated: non-blocking buffer size. // If the file exceeds this buffer size scheduled transfer is used. // Default: 2e9 maxMasterFileBufferSize 2e9; } When using the collated file handling, memory is allocated for the data in the thread. maxThreadFileBufferSize sets the maximum size of memory in bytes that is allocated. If the data exceeds this size, the write does not use threading. When using the masterUncollated file handling, non-blocking MPI communication requires a sufficiently large memory buffer on the master node. maxMasterFileBufferSize sets the maximum size in bytes of the buffer. If the data exceeds this size, the system uses scheduled communication. The installation defaults for the fileHandler choice, maxThreadFileBufferSize and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within the case controlDict file, like other parameters. Additionally the fileHandler can be set by: - the "-fileHandler" command line argument; - a FOAM_FILEHANDLER environment variable. A foamFormatConvert utility allows users to convert files between the collated and uncollated formats, e.g. mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated An example case demonstrating the file handling methods is provided in: $FOAM_TUTORIALS/IO/fileHandling The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
977 lines
28 KiB
C
977 lines
28 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "domainDecomposition.H"
|
|
#include "dictionary.H"
|
|
#include "labelIOList.H"
|
|
#include "processorPolyPatch.H"
|
|
#include "processorCyclicPolyPatch.H"
|
|
#include "fvMesh.H"
|
|
#include "OSspecific.H"
|
|
#include "Map.H"
|
|
#include "DynamicList.H"
|
|
#include "fvFieldDecomposer.H"
|
|
#include "IOobjectList.H"
|
|
#include "cellSet.H"
|
|
#include "faceSet.H"
|
|
#include "pointSet.H"
|
|
#include "decompositionModel.H"
|
|
#include "hexRef8Data.H"
|
|
|
|
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
|
|
|
|
void Foam::domainDecomposition::mark
|
|
(
|
|
const labelList& zoneElems,
|
|
const label zoneI,
|
|
labelList& elementToZone
|
|
)
|
|
{
|
|
forAll(zoneElems, i)
|
|
{
|
|
label pointi = zoneElems[i];
|
|
|
|
if (elementToZone[pointi] == -1)
|
|
{
|
|
// First occurrence
|
|
elementToZone[pointi] = zoneI;
|
|
}
|
|
else if (elementToZone[pointi] >= 0)
|
|
{
|
|
// Multiple zones
|
|
elementToZone[pointi] = -2;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
|
|
|
// from components
|
|
Foam::domainDecomposition::domainDecomposition
|
|
(
|
|
const IOobject& io,
|
|
const fileName& decompDictFile
|
|
)
|
|
:
|
|
fvMesh(io),
|
|
facesInstancePointsPtr_
|
|
(
|
|
pointsInstance() != facesInstance()
|
|
? new pointIOField
|
|
(
|
|
IOobject
|
|
(
|
|
"points",
|
|
facesInstance(),
|
|
polyMesh::meshSubDir,
|
|
*this,
|
|
IOobject::MUST_READ,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
)
|
|
)
|
|
: nullptr
|
|
),
|
|
decompDictFile_(decompDictFile),
|
|
nProcs_
|
|
(
|
|
readInt
|
|
(
|
|
decompositionModel::New
|
|
(
|
|
*this,
|
|
decompDictFile
|
|
).lookup("numberOfSubdomains")
|
|
)
|
|
),
|
|
distributed_(false),
|
|
cellToProc_(nCells()),
|
|
procPointAddressing_(nProcs_),
|
|
procFaceAddressing_(nProcs_),
|
|
procCellAddressing_(nProcs_),
|
|
procPatchSize_(nProcs_),
|
|
procPatchStartIndex_(nProcs_),
|
|
procNeighbourProcessors_(nProcs_),
|
|
procProcessorPatchSize_(nProcs_),
|
|
procProcessorPatchStartIndex_(nProcs_),
|
|
procProcessorPatchSubPatchIDs_(nProcs_),
|
|
procProcessorPatchSubPatchStarts_(nProcs_)
|
|
{
|
|
decompositionModel::New
|
|
(
|
|
*this,
|
|
decompDictFile
|
|
).readIfPresent("distributed", distributed_);
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
|
|
|
|
Foam::domainDecomposition::~domainDecomposition()
|
|
{}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
|
|
|
|
bool Foam::domainDecomposition::writeDecomposition(const bool decomposeSets)
|
|
{
|
|
Info<< "\nConstructing processor meshes" << endl;
|
|
|
|
// Mark point/faces/cells that are in zones.
|
|
// -1 : not in zone
|
|
// -2 : in multiple zones
|
|
// >= 0 : in single given zone
|
|
// This will give direct lookup of elements that are in a single zone
|
|
// and we'll only have to revert back to searching through all zones
|
|
// for the duplicate elements
|
|
|
|
// Point zones
|
|
labelList pointToZone(points().size(), -1);
|
|
|
|
forAll(pointZones(), zonei)
|
|
{
|
|
mark(pointZones()[zonei], zonei, pointToZone);
|
|
}
|
|
|
|
// Face zones
|
|
labelList faceToZone(faces().size(), -1);
|
|
|
|
forAll(faceZones(), zonei)
|
|
{
|
|
mark(faceZones()[zonei], zonei, faceToZone);
|
|
}
|
|
|
|
// Cell zones
|
|
labelList cellToZone(nCells(), -1);
|
|
|
|
forAll(cellZones(), zonei)
|
|
{
|
|
mark(cellZones()[zonei], zonei, cellToZone);
|
|
}
|
|
|
|
|
|
PtrList<const cellSet> cellSets;
|
|
PtrList<const faceSet> faceSets;
|
|
PtrList<const pointSet> pointSets;
|
|
if (decomposeSets)
|
|
{
|
|
// Read sets
|
|
IOobjectList objects(*this, facesInstance(), "polyMesh/sets");
|
|
{
|
|
IOobjectList cSets(objects.lookupClass(cellSet::typeName));
|
|
forAllConstIter(IOobjectList, cSets, iter)
|
|
{
|
|
cellSets.append(new cellSet(*iter()));
|
|
}
|
|
}
|
|
{
|
|
IOobjectList fSets(objects.lookupClass(faceSet::typeName));
|
|
forAllConstIter(IOobjectList, fSets, iter)
|
|
{
|
|
faceSets.append(new faceSet(*iter()));
|
|
}
|
|
}
|
|
{
|
|
IOobjectList pSets(objects.lookupClass(pointSet::typeName));
|
|
forAllConstIter(IOobjectList, pSets, iter)
|
|
{
|
|
pointSets.append(new pointSet(*iter()));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Load refinement data (if any)
|
|
hexRef8Data baseMeshData
|
|
(
|
|
IOobject
|
|
(
|
|
"dummy",
|
|
facesInstance(),
|
|
polyMesh::meshSubDir,
|
|
*this,
|
|
IOobject::READ_IF_PRESENT,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
)
|
|
);
|
|
|
|
|
|
|
|
label maxProcCells = 0;
|
|
label totProcFaces = 0;
|
|
label maxProcPatches = 0;
|
|
label totProcPatches = 0;
|
|
label maxProcFaces = 0;
|
|
|
|
|
|
// Write out the meshes
|
|
for (label proci = 0; proci < nProcs_; proci++)
|
|
{
|
|
// Create processor points
|
|
const labelList& curPointLabels = procPointAddressing_[proci];
|
|
|
|
const pointField& meshPoints = points();
|
|
|
|
labelList pointLookup(nPoints(), -1);
|
|
|
|
pointField procPoints(curPointLabels.size());
|
|
|
|
forAll(curPointLabels, pointi)
|
|
{
|
|
procPoints[pointi] = meshPoints[curPointLabels[pointi]];
|
|
|
|
pointLookup[curPointLabels[pointi]] = pointi;
|
|
}
|
|
|
|
// Create processor faces
|
|
const labelList& curFaceLabels = procFaceAddressing_[proci];
|
|
|
|
const faceList& meshFaces = faces();
|
|
|
|
labelList faceLookup(nFaces(), -1);
|
|
|
|
faceList procFaces(curFaceLabels.size());
|
|
|
|
forAll(curFaceLabels, facei)
|
|
{
|
|
// Mark the original face as used
|
|
// Remember to decrement the index by one (turning index)
|
|
//
|
|
label curF = mag(curFaceLabels[facei]) - 1;
|
|
|
|
faceLookup[curF] = facei;
|
|
|
|
// get the original face
|
|
labelList origFaceLabels;
|
|
|
|
if (curFaceLabels[facei] >= 0)
|
|
{
|
|
// face not turned
|
|
origFaceLabels = meshFaces[curF];
|
|
}
|
|
else
|
|
{
|
|
origFaceLabels = meshFaces[curF].reverseFace();
|
|
}
|
|
|
|
// translate face labels into local point list
|
|
face& procFaceLabels = procFaces[facei];
|
|
|
|
procFaceLabels.setSize(origFaceLabels.size());
|
|
|
|
forAll(origFaceLabels, pointi)
|
|
{
|
|
procFaceLabels[pointi] = pointLookup[origFaceLabels[pointi]];
|
|
}
|
|
}
|
|
|
|
// Create processor cells
|
|
const labelList& curCellLabels = procCellAddressing_[proci];
|
|
|
|
const cellList& meshCells = cells();
|
|
|
|
cellList procCells(curCellLabels.size());
|
|
|
|
forAll(curCellLabels, celli)
|
|
{
|
|
const labelList& origCellLabels = meshCells[curCellLabels[celli]];
|
|
|
|
cell& curCell = procCells[celli];
|
|
|
|
curCell.setSize(origCellLabels.size());
|
|
|
|
forAll(origCellLabels, cellFacei)
|
|
{
|
|
curCell[cellFacei] = faceLookup[origCellLabels[cellFacei]];
|
|
}
|
|
}
|
|
|
|
// Create processor mesh without a boundary
|
|
|
|
fileName processorCasePath
|
|
(
|
|
time().caseName()/fileName(word("processor") + Foam::name(proci))
|
|
);
|
|
|
|
// create a database
|
|
Time processorDb
|
|
(
|
|
Time::controlDictName,
|
|
time().rootPath(),
|
|
processorCasePath,
|
|
word("system"),
|
|
word("constant")
|
|
);
|
|
processorDb.setTime(time());
|
|
|
|
// create the mesh. Two situations:
|
|
// - points and faces come from the same time ('instance'). The mesh
|
|
// will get constructed in the same instance.
|
|
// - points come from a different time (moving mesh cases).
|
|
// It will read the points belonging to the faces instance and
|
|
// construct the procMesh with it which then gets handled as above.
|
|
// (so with 'old' geometry).
|
|
// Only at writing time will it additionally write the current
|
|
// points.
|
|
|
|
autoPtr<polyMesh> procMeshPtr;
|
|
|
|
if (facesInstancePointsPtr_.valid())
|
|
{
|
|
// Construct mesh from facesInstance.
|
|
pointField facesInstancePoints
|
|
(
|
|
facesInstancePointsPtr_(),
|
|
curPointLabels
|
|
);
|
|
|
|
procMeshPtr.reset
|
|
(
|
|
new polyMesh
|
|
(
|
|
IOobject
|
|
(
|
|
this->polyMesh::name(), // region of undecomposed mesh
|
|
facesInstance(),
|
|
processorDb
|
|
),
|
|
xferMove(facesInstancePoints),
|
|
xferMove(procFaces),
|
|
xferMove(procCells)
|
|
)
|
|
);
|
|
}
|
|
else
|
|
{
|
|
procMeshPtr.reset
|
|
(
|
|
new polyMesh
|
|
(
|
|
IOobject
|
|
(
|
|
this->polyMesh::name(), // region of undecomposed mesh
|
|
facesInstance(),
|
|
processorDb
|
|
),
|
|
xferMove(procPoints),
|
|
xferMove(procFaces),
|
|
xferMove(procCells)
|
|
)
|
|
);
|
|
}
|
|
polyMesh& procMesh = procMeshPtr();
|
|
|
|
|
|
// Create processor boundary patches
|
|
const labelList& curPatchSizes = procPatchSize_[proci];
|
|
|
|
const labelList& curPatchStarts = procPatchStartIndex_[proci];
|
|
|
|
const labelList& curNeighbourProcessors =
|
|
procNeighbourProcessors_[proci];
|
|
|
|
const labelList& curProcessorPatchSizes =
|
|
procProcessorPatchSize_[proci];
|
|
|
|
const labelList& curProcessorPatchStarts =
|
|
procProcessorPatchStartIndex_[proci];
|
|
|
|
const labelListList& curSubPatchIDs =
|
|
procProcessorPatchSubPatchIDs_[proci];
|
|
|
|
const labelListList& curSubStarts =
|
|
procProcessorPatchSubPatchStarts_[proci];
|
|
|
|
const polyPatchList& meshPatches = boundaryMesh();
|
|
|
|
|
|
// Count the number of inter-proc patches
|
|
label nInterProcPatches = 0;
|
|
forAll(curSubPatchIDs, procPatchi)
|
|
{
|
|
nInterProcPatches += curSubPatchIDs[procPatchi].size();
|
|
}
|
|
|
|
List<polyPatch*> procPatches
|
|
(
|
|
curPatchSizes.size() + nInterProcPatches,
|
|
reinterpret_cast<polyPatch*>(0)
|
|
);
|
|
|
|
label nPatches = 0;
|
|
|
|
forAll(curPatchSizes, patchi)
|
|
{
|
|
// Get the face labels consistent with the field mapping
|
|
// (reuse the patch field mappers)
|
|
const polyPatch& meshPatch = meshPatches[patchi];
|
|
|
|
fvFieldDecomposer::patchFieldDecomposer patchMapper
|
|
(
|
|
SubList<label>
|
|
(
|
|
curFaceLabels,
|
|
curPatchSizes[patchi],
|
|
curPatchStarts[patchi]
|
|
),
|
|
meshPatch.start()
|
|
);
|
|
|
|
// Map existing patches
|
|
procPatches[nPatches] = meshPatch.clone
|
|
(
|
|
procMesh.boundaryMesh(),
|
|
nPatches,
|
|
patchMapper.directAddressing(),
|
|
curPatchStarts[patchi]
|
|
).ptr();
|
|
|
|
nPatches++;
|
|
}
|
|
|
|
forAll(curProcessorPatchSizes, procPatchi)
|
|
{
|
|
const labelList& subPatchID = curSubPatchIDs[procPatchi];
|
|
const labelList& subStarts = curSubStarts[procPatchi];
|
|
|
|
label curStart = curProcessorPatchStarts[procPatchi];
|
|
|
|
forAll(subPatchID, i)
|
|
{
|
|
label size =
|
|
(
|
|
i < subPatchID.size()-1
|
|
? subStarts[i+1] - subStarts[i]
|
|
: curProcessorPatchSizes[procPatchi] - subStarts[i]
|
|
);
|
|
|
|
if (subPatchID[i] == -1)
|
|
{
|
|
// From internal faces
|
|
procPatches[nPatches] =
|
|
new processorPolyPatch
|
|
(
|
|
size,
|
|
curStart,
|
|
nPatches,
|
|
procMesh.boundaryMesh(),
|
|
proci,
|
|
curNeighbourProcessors[procPatchi]
|
|
);
|
|
}
|
|
else
|
|
{
|
|
const coupledPolyPatch& pcPatch
|
|
= refCast<const coupledPolyPatch>
|
|
(
|
|
boundaryMesh()[subPatchID[i]]
|
|
);
|
|
|
|
procPatches[nPatches] =
|
|
new processorCyclicPolyPatch
|
|
(
|
|
size,
|
|
curStart,
|
|
nPatches,
|
|
procMesh.boundaryMesh(),
|
|
proci,
|
|
curNeighbourProcessors[procPatchi],
|
|
pcPatch.name(),
|
|
pcPatch.transform()
|
|
);
|
|
}
|
|
|
|
curStart += size;
|
|
|
|
nPatches++;
|
|
}
|
|
}
|
|
|
|
// Add boundary patches
|
|
procMesh.addPatches(procPatches);
|
|
|
|
// Create and add zones
|
|
|
|
// Point zones
|
|
{
|
|
const pointZoneMesh& pz = pointZones();
|
|
|
|
// Go through all the zoned points and find out if they
|
|
// belong to a zone. If so, add it to the zone as
|
|
// necessary
|
|
List<DynamicList<label>> zonePoints(pz.size());
|
|
|
|
// Estimate size
|
|
forAll(zonePoints, zonei)
|
|
{
|
|
zonePoints[zonei].setCapacity(pz[zonei].size()/nProcs_);
|
|
}
|
|
|
|
// Use the pointToZone map to find out the single zone (if any),
|
|
// use slow search only for shared points.
|
|
forAll(curPointLabels, pointi)
|
|
{
|
|
label curPoint = curPointLabels[pointi];
|
|
|
|
label zonei = pointToZone[curPoint];
|
|
|
|
if (zonei >= 0)
|
|
{
|
|
// Single zone.
|
|
zonePoints[zonei].append(pointi);
|
|
}
|
|
else if (zonei == -2)
|
|
{
|
|
// Multiple zones. Lookup.
|
|
forAll(pz, zonei)
|
|
{
|
|
label index = pz[zonei].whichPoint(curPoint);
|
|
|
|
if (index != -1)
|
|
{
|
|
zonePoints[zonei].append(pointi);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
procMesh.pointZones().clearAddressing();
|
|
procMesh.pointZones().setSize(zonePoints.size());
|
|
forAll(zonePoints, zonei)
|
|
{
|
|
procMesh.pointZones().set
|
|
(
|
|
zonei,
|
|
pz[zonei].clone
|
|
(
|
|
procMesh.pointZones(),
|
|
zonei,
|
|
zonePoints[zonei].shrink()
|
|
)
|
|
);
|
|
}
|
|
|
|
if (pz.size())
|
|
{
|
|
// Force writing on all processors
|
|
procMesh.pointZones().writeOpt() = IOobject::AUTO_WRITE;
|
|
}
|
|
}
|
|
|
|
// Face zones
|
|
{
|
|
const faceZoneMesh& fz = faceZones();
|
|
|
|
// Go through all the zoned face and find out if they
|
|
// belong to a zone. If so, add it to the zone as
|
|
// necessary
|
|
List<DynamicList<label>> zoneFaces(fz.size());
|
|
List<DynamicList<bool>> zoneFaceFlips(fz.size());
|
|
|
|
// Estimate size
|
|
forAll(zoneFaces, zonei)
|
|
{
|
|
label procSize = fz[zonei].size() / nProcs_;
|
|
|
|
zoneFaces[zonei].setCapacity(procSize);
|
|
zoneFaceFlips[zonei].setCapacity(procSize);
|
|
}
|
|
|
|
// Go through all the zoned faces and find out if they
|
|
// belong to a zone. If so, add it to the zone as
|
|
// necessary
|
|
forAll(curFaceLabels, facei)
|
|
{
|
|
// Remember to decrement the index by one (turning index)
|
|
//
|
|
label curF = mag(curFaceLabels[facei]) - 1;
|
|
|
|
label zonei = faceToZone[curF];
|
|
|
|
if (zonei >= 0)
|
|
{
|
|
// Single zone. Add the face
|
|
zoneFaces[zonei].append(facei);
|
|
|
|
label index = fz[zonei].whichFace(curF);
|
|
|
|
bool flip = fz[zonei].flipMap()[index];
|
|
|
|
if (curFaceLabels[facei] < 0)
|
|
{
|
|
flip = !flip;
|
|
}
|
|
|
|
zoneFaceFlips[zonei].append(flip);
|
|
}
|
|
else if (zonei == -2)
|
|
{
|
|
// Multiple zones. Lookup.
|
|
forAll(fz, zonei)
|
|
{
|
|
label index = fz[zonei].whichFace(curF);
|
|
|
|
if (index != -1)
|
|
{
|
|
zoneFaces[zonei].append(facei);
|
|
|
|
bool flip = fz[zonei].flipMap()[index];
|
|
|
|
if (curFaceLabels[facei] < 0)
|
|
{
|
|
flip = !flip;
|
|
}
|
|
|
|
zoneFaceFlips[zonei].append(flip);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
procMesh.faceZones().clearAddressing();
|
|
procMesh.faceZones().setSize(zoneFaces.size());
|
|
forAll(zoneFaces, zonei)
|
|
{
|
|
procMesh.faceZones().set
|
|
(
|
|
zonei,
|
|
fz[zonei].clone
|
|
(
|
|
zoneFaces[zonei].shrink(), // addressing
|
|
zoneFaceFlips[zonei].shrink(), // flipmap
|
|
zonei,
|
|
procMesh.faceZones()
|
|
)
|
|
);
|
|
}
|
|
|
|
if (fz.size())
|
|
{
|
|
// Force writing on all processors
|
|
procMesh.faceZones().writeOpt() = IOobject::AUTO_WRITE;
|
|
}
|
|
}
|
|
|
|
// Cell zones
|
|
{
|
|
const cellZoneMesh& cz = cellZones();
|
|
|
|
// Go through all the zoned cells and find out if they
|
|
// belong to a zone. If so, add it to the zone as
|
|
// necessary
|
|
List<DynamicList<label>> zoneCells(cz.size());
|
|
|
|
// Estimate size
|
|
forAll(zoneCells, zonei)
|
|
{
|
|
zoneCells[zonei].setCapacity(cz[zonei].size()/nProcs_);
|
|
}
|
|
|
|
forAll(curCellLabels, celli)
|
|
{
|
|
label curCelli = curCellLabels[celli];
|
|
|
|
label zonei = cellToZone[curCelli];
|
|
|
|
if (zonei >= 0)
|
|
{
|
|
// Single zone.
|
|
zoneCells[zonei].append(celli);
|
|
}
|
|
else if (zonei == -2)
|
|
{
|
|
// Multiple zones. Lookup.
|
|
forAll(cz, zonei)
|
|
{
|
|
label index = cz[zonei].whichCell(curCelli);
|
|
|
|
if (index != -1)
|
|
{
|
|
zoneCells[zonei].append(celli);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
procMesh.cellZones().clearAddressing();
|
|
procMesh.cellZones().setSize(zoneCells.size());
|
|
forAll(zoneCells, zonei)
|
|
{
|
|
procMesh.cellZones().set
|
|
(
|
|
zonei,
|
|
cz[zonei].clone
|
|
(
|
|
zoneCells[zonei].shrink(),
|
|
zonei,
|
|
procMesh.cellZones()
|
|
)
|
|
);
|
|
}
|
|
|
|
if (cz.size())
|
|
{
|
|
// Force writing on all processors
|
|
procMesh.cellZones().writeOpt() = IOobject::AUTO_WRITE;
|
|
}
|
|
}
|
|
|
|
// Set the precision of the points data to be min 10
|
|
IOstream::defaultPrecision(max(10u, IOstream::defaultPrecision()));
|
|
|
|
procMesh.write();
|
|
|
|
// Write points if pointsInstance differing from facesInstance
|
|
if (facesInstancePointsPtr_.valid())
|
|
{
|
|
pointIOField pointsInstancePoints
|
|
(
|
|
IOobject
|
|
(
|
|
"points",
|
|
pointsInstance(),
|
|
polyMesh::meshSubDir,
|
|
procMesh,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
),
|
|
xferMove(procPoints)
|
|
);
|
|
pointsInstancePoints.write();
|
|
}
|
|
|
|
|
|
// Decompose any sets
|
|
if (decomposeSets)
|
|
{
|
|
forAll(cellSets, i)
|
|
{
|
|
const cellSet& cs = cellSets[i];
|
|
cellSet set(procMesh, cs.name(), cs.size()/nProcs_);
|
|
forAll(curCellLabels, i)
|
|
{
|
|
if (cs.found(curCellLabels[i]))
|
|
{
|
|
set.insert(i);
|
|
}
|
|
}
|
|
set.write();
|
|
}
|
|
forAll(faceSets, i)
|
|
{
|
|
const faceSet& cs = faceSets[i];
|
|
faceSet set(procMesh, cs.name(), cs.size()/nProcs_);
|
|
forAll(curFaceLabels, i)
|
|
{
|
|
if (cs.found(mag(curFaceLabels[i])-1))
|
|
{
|
|
set.insert(i);
|
|
}
|
|
}
|
|
set.write();
|
|
}
|
|
forAll(pointSets, i)
|
|
{
|
|
const pointSet& cs = pointSets[i];
|
|
pointSet set(procMesh, cs.name(), cs.size()/nProcs_);
|
|
forAll(curPointLabels, i)
|
|
{
|
|
if (cs.found(curPointLabels[i]))
|
|
{
|
|
set.insert(i);
|
|
}
|
|
}
|
|
set.write();
|
|
}
|
|
}
|
|
|
|
|
|
// Optional hexRef8 data
|
|
hexRef8Data
|
|
(
|
|
IOobject
|
|
(
|
|
"dummy",
|
|
facesInstance(),
|
|
polyMesh::meshSubDir,
|
|
procMesh,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
),
|
|
baseMeshData,
|
|
procCellAddressing_[proci],
|
|
procPointAddressing_[proci]
|
|
).write();
|
|
|
|
|
|
// Statistics
|
|
|
|
Info<< endl
|
|
<< "Processor " << proci << nl
|
|
<< " Number of cells = " << procMesh.nCells()
|
|
<< endl;
|
|
|
|
maxProcCells = max(maxProcCells, procMesh.nCells());
|
|
|
|
label nBoundaryFaces = 0;
|
|
label nProcPatches = 0;
|
|
label nProcFaces = 0;
|
|
|
|
forAll(procMesh.boundaryMesh(), patchi)
|
|
{
|
|
if (isA<processorPolyPatch>(procMesh.boundaryMesh()[patchi]))
|
|
{
|
|
const processorPolyPatch& ppp =
|
|
refCast<const processorPolyPatch>
|
|
(
|
|
procMesh.boundaryMesh()[patchi]
|
|
);
|
|
|
|
Info<< " Number of faces shared with processor "
|
|
<< ppp.neighbProcNo() << " = " << ppp.size() << endl;
|
|
|
|
nProcPatches++;
|
|
nProcFaces += ppp.size();
|
|
}
|
|
else
|
|
{
|
|
nBoundaryFaces += procMesh.boundaryMesh()[patchi].size();
|
|
}
|
|
}
|
|
|
|
Info<< " Number of processor patches = " << nProcPatches << nl
|
|
<< " Number of processor faces = " << nProcFaces << nl
|
|
<< " Number of boundary faces = " << nBoundaryFaces << endl;
|
|
|
|
totProcFaces += nProcFaces;
|
|
totProcPatches += nProcPatches;
|
|
maxProcPatches = max(maxProcPatches, nProcPatches);
|
|
maxProcFaces = max(maxProcFaces, nProcFaces);
|
|
|
|
// create and write the addressing information
|
|
labelIOList pointProcAddressing
|
|
(
|
|
IOobject
|
|
(
|
|
"pointProcAddressing",
|
|
procMesh.facesInstance(),
|
|
procMesh.meshSubDir,
|
|
procMesh,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
procPointAddressing_[proci]
|
|
);
|
|
pointProcAddressing.write();
|
|
|
|
labelIOList faceProcAddressing
|
|
(
|
|
IOobject
|
|
(
|
|
"faceProcAddressing",
|
|
procMesh.facesInstance(),
|
|
procMesh.meshSubDir,
|
|
procMesh,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
procFaceAddressing_[proci]
|
|
);
|
|
faceProcAddressing.write();
|
|
|
|
labelIOList cellProcAddressing
|
|
(
|
|
IOobject
|
|
(
|
|
"cellProcAddressing",
|
|
procMesh.facesInstance(),
|
|
procMesh.meshSubDir,
|
|
procMesh,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
procCellAddressing_[proci]
|
|
);
|
|
cellProcAddressing.write();
|
|
|
|
// Write patch map for backwards compatibility.
|
|
// (= identity map for original patches, -1 for processor patches)
|
|
label nMeshPatches = curPatchSizes.size();
|
|
labelList procBoundaryAddressing(identity(nMeshPatches));
|
|
procBoundaryAddressing.setSize(nMeshPatches+nProcPatches, -1);
|
|
|
|
labelIOList boundaryProcAddressing
|
|
(
|
|
IOobject
|
|
(
|
|
"boundaryProcAddressing",
|
|
procMesh.facesInstance(),
|
|
procMesh.meshSubDir,
|
|
procMesh,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
procBoundaryAddressing
|
|
);
|
|
boundaryProcAddressing.write();
|
|
}
|
|
|
|
scalar avgProcCells = scalar(nCells())/nProcs_;
|
|
scalar avgProcPatches = scalar(totProcPatches)/nProcs_;
|
|
scalar avgProcFaces = scalar(totProcFaces)/nProcs_;
|
|
|
|
// In case of all faces on one processor. Just to avoid division by 0.
|
|
if (totProcPatches == 0)
|
|
{
|
|
avgProcPatches = 1;
|
|
}
|
|
if (totProcFaces == 0)
|
|
{
|
|
avgProcFaces = 1;
|
|
}
|
|
|
|
Info<< nl
|
|
<< "Number of processor faces = " << totProcFaces/2 << nl
|
|
<< "Max number of cells = " << maxProcCells
|
|
<< " (" << 100.0*(maxProcCells-avgProcCells)/avgProcCells
|
|
<< "% above average " << avgProcCells << ")" << nl
|
|
<< "Max number of processor patches = " << maxProcPatches
|
|
<< " (" << 100.0*(maxProcPatches-avgProcPatches)/avgProcPatches
|
|
<< "% above average " << avgProcPatches << ")" << nl
|
|
<< "Max number of faces between processors = " << maxProcFaces
|
|
<< " (" << 100.0*(maxProcFaces-avgProcFaces)/avgProcFaces
|
|
<< "% above average " << avgProcFaces << ")" << nl
|
|
<< endl;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|