openfoam/applications/utilities/mesh/manipulation/checkMesh/writeFields.C

767 lines
20 KiB
C

#include "writeFields.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "polyMeshTools.H"
#include "zeroGradientFvPatchFields.H"
#include "syncTools.H"
#include "tetPointRef.H"
#include "regionSplit.H"
#include "wallDist.H"
#include "cellAspectRatio.H"
using namespace Foam;
void maxFaceToCell
(
const scalarField& faceData,
volScalarField& cellData
)
{
const cellList& cells = cellData.mesh().cells();
scalarField& cellFld = cellData.ref();
cellFld = -GREAT;
forAll(cells, cellI)
{
const cell& cFaces = cells[cellI];
forAll(cFaces, i)
{
cellFld[cellI] = max(cellFld[cellI], faceData[cFaces[i]]);
}
}
forAll(cellData.boundaryField(), patchI)
{
fvPatchScalarField& fvp = cellData.boundaryFieldRef()[patchI];
fvp = fvp.patch().patchSlice(faceData);
}
cellData.correctBoundaryConditions();
}
void minFaceToCell
(
const scalarField& faceData,
volScalarField& cellData
)
{
const cellList& cells = cellData.mesh().cells();
scalarField& cellFld = cellData.ref();
cellFld = GREAT;
forAll(cells, cellI)
{
const cell& cFaces = cells[cellI];
forAll(cFaces, i)
{
cellFld[cellI] = min(cellFld[cellI], faceData[cFaces[i]]);
}
}
forAll(cellData.boundaryField(), patchI)
{
fvPatchScalarField& fvp = cellData.boundaryFieldRef()[patchI];
fvp = fvp.patch().patchSlice(faceData);
}
cellData.correctBoundaryConditions();
}
void minFaceToCell
(
const surfaceScalarField& faceData,
volScalarField& cellData,
const bool correctBoundaryConditions
)
{
scalarField& cellFld = cellData.ref();
cellFld = GREAT;
const labelUList& own = cellData.mesh().owner();
const labelUList& nei = cellData.mesh().neighbour();
// Internal faces
forAll(own, facei)
{
cellFld[own[facei]] = min(cellFld[own[facei]], faceData[facei]);
cellFld[nei[facei]] = min(cellFld[nei[facei]], faceData[facei]);
}
// Patch faces
forAll(faceData.boundaryField(), patchi)
{
const fvsPatchScalarField& fvp = faceData.boundaryField()[patchi];
const labelUList& fc = fvp.patch().faceCells();
forAll(fc, i)
{
cellFld[fc[i]] = min(cellFld[fc[i]], fvp[i]);
}
}
volScalarField::Boundary& bfld = cellData.boundaryFieldRef();
forAll(bfld, patchi)
{
bfld[patchi] = faceData.boundaryField()[patchi];
}
if (correctBoundaryConditions)
{
cellData.correctBoundaryConditions();
}
}
void writeSurfaceField
(
const fvMesh& mesh,
const fileName& fName,
const scalarField& faceData
)
{
// Write single surfaceScalarField
surfaceScalarField fld
(
IOobject
(
fName,
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
calculatedFvsPatchScalarField::typeName
);
fld.primitiveFieldRef() = faceData;
//fld.correctBoundaryConditions();
Info<< " Writing face data to " << fName << endl;
fld.write();
}
void Foam::writeFields
(
const fvMesh& mesh,
const wordHashSet& selectedFields,
const bool writeFaceFields
)
{
if (selectedFields.empty())
{
return;
}
Info<< "Writing fields with mesh quality parameters" << endl;
if (selectedFields.found("nonOrthoAngle"))
{
//- Face based orthogonality
const scalarField faceOrthogonality
(
polyMeshTools::faceOrthogonality
(
mesh,
mesh.faceAreas(),
mesh.cellCentres()
)
);
//- Face based angle
const scalarField nonOrthoAngle
(
radToDeg
(
Foam::acos(min(scalar(1), faceOrthogonality))
)
);
//- Cell field - max of either face
volScalarField cellNonOrthoAngle
(
IOobject
(
"nonOrthoAngle",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
calculatedFvPatchScalarField::typeName
);
//- Take max
maxFaceToCell(nonOrthoAngle, cellNonOrthoAngle);
Info<< " Writing non-orthogonality (angle) to "
<< cellNonOrthoAngle.name() << endl;
cellNonOrthoAngle.write();
if (writeFaceFields)
{
writeSurfaceField
(
mesh,
"face_nonOrthoAngle",
SubField<scalar>(nonOrthoAngle, mesh.nInternalFaces())
);
}
}
if (selectedFields.found("faceWeight"))
{
volScalarField cellWeights
(
IOobject
(
"faceWeight",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
wordList // wanted bc types
(
mesh.boundary().size(),
calculatedFvPatchScalarField::typeName
),
mesh.weights().boundaryField().types() // current bc types
);
//- Take min
minFaceToCell(mesh.weights(), cellWeights, false);
Info<< " Writing face interpolation weights (0..0.5) to "
<< cellWeights.name() << endl;
cellWeights.write();
if (writeFaceFields)
{
writeSurfaceField(mesh, "face_faceWeight", mesh.weights());
}
}
// Skewness
// ~~~~~~~~
if (selectedFields.found("skewness"))
{
//- Face based skewness
const scalarField faceSkewness
(
polyMeshTools::faceSkewness
(
mesh,
mesh.points(),
mesh.faceCentres(),
mesh.faceAreas(),
mesh.cellCentres()
)
);
//- Cell field - max of either face
volScalarField cellSkewness
(
IOobject
(
"skewness",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
calculatedFvPatchScalarField::typeName
);
//- Take max
maxFaceToCell(faceSkewness, cellSkewness);
Info<< " Writing face skewness to " << cellSkewness.name() << endl;
cellSkewness.write();
if (writeFaceFields)
{
writeSurfaceField
(
mesh,
"face_skewness",
SubField<scalar>(faceSkewness, mesh.nInternalFaces())
);
}
}
// cellDeterminant
// ~~~~~~~~~~~~~~~
if (selectedFields.found("cellDeterminant"))
{
volScalarField cellDeterminant
(
IOobject
(
"cellDeterminant",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
zeroGradientFvPatchScalarField::typeName
);
cellDeterminant.primitiveFieldRef() =
primitiveMeshTools::cellDeterminant
(
mesh,
mesh.geometricD(),
mesh.faceAreas(),
syncTools::getInternalOrCoupledFaces(mesh)
);
cellDeterminant.correctBoundaryConditions();
Info<< " Writing cell determinant to "
<< cellDeterminant.name() << endl;
cellDeterminant.write();
}
// Aspect ratio
// ~~~~~~~~~~~~
if (selectedFields.found("aspectRatio"))
{
volScalarField aspectRatio
(
IOobject
(
"aspectRatio",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
zeroGradientFvPatchScalarField::typeName
);
scalarField cellOpenness;
polyMeshTools::cellClosedness
(
mesh,
mesh.geometricD(),
mesh.faceAreas(),
mesh.cellVolumes(),
cellOpenness,
aspectRatio.ref()
);
aspectRatio.correctBoundaryConditions();
Info<< " Writing aspect ratio to " << aspectRatio.name() << endl;
aspectRatio.write();
}
if (selectedFields.found("cellAspectRatio"))
{
volScalarField aspectRatio
(
IOobject
(
"cellAspectRatio",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
zeroGradientFvPatchScalarField::typeName
);
aspectRatio.ref().field() = cellAspectRatio(mesh);
aspectRatio.correctBoundaryConditions();
Info<< " Writing approximate aspect ratio to "
<< aspectRatio.name() << endl;
aspectRatio.write();
}
// cell type
// ~~~~~~~~~
if (selectedFields.found("cellShapes"))
{
volScalarField shape
(
IOobject
(
"cellShapes",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
zeroGradientFvPatchScalarField::typeName
);
const cellShapeList& cellShapes = mesh.cellShapes();
forAll(cellShapes, cellI)
{
const cellModel& model = cellShapes[cellI].model();
shape[cellI] = model.index();
}
shape.correctBoundaryConditions();
Info<< " Writing cell shape (hex, tet etc.) to " << shape.name()
<< endl;
shape.write();
}
if (selectedFields.found("cellVolume"))
{
volScalarField V
(
IOobject
(
"cellVolume",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimVolume, Zero),
calculatedFvPatchScalarField::typeName
);
V.ref() = mesh.V();
Info<< " Writing cell volume to " << V.name() << endl;
V.write();
}
if (selectedFields.found("cellVolumeRatio"))
{
const scalarField faceVolumeRatio
(
polyMeshTools::volRatio
(
mesh,
mesh.V()
)
);
volScalarField cellVolumeRatio
(
IOobject
(
"cellVolumeRatio",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
calculatedFvPatchScalarField::typeName
);
//- Take min
minFaceToCell(faceVolumeRatio, cellVolumeRatio);
Info<< " Writing cell volume ratio to "
<< cellVolumeRatio.name() << endl;
cellVolumeRatio.write();
if (writeFaceFields)
{
writeSurfaceField
(
mesh,
"face_cellVolumeRatio",
SubField<scalar>(faceVolumeRatio, mesh.nInternalFaces())
);
}
}
// minTetVolume
if (selectedFields.found("minTetVolume"))
{
volScalarField minTetVolume
(
IOobject
(
"minTetVolume",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar("minTetVolume", dimless, GREAT),
zeroGradientFvPatchScalarField::typeName
);
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const pointField& p = mesh.points();
forAll(own, facei)
{
const face& f = mesh.faces()[facei];
const point& fc = mesh.faceCentres()[facei];
{
const point& ownCc = mesh.cellCentres()[own[facei]];
scalar& ownVol = minTetVolume[own[facei]];
forAll(f, fp)
{
scalar tetQual = tetPointRef
(
p[f[fp]],
p[f.nextLabel(fp)],
ownCc,
fc
).quality();
ownVol = min(ownVol, tetQual);
}
}
if (mesh.isInternalFace(facei))
{
const point& neiCc = mesh.cellCentres()[nei[facei]];
scalar& neiVol = minTetVolume[nei[facei]];
forAll(f, fp)
{
scalar tetQual = tetPointRef
(
p[f[fp]],
p[f.nextLabel(fp)],
fc,
neiCc
).quality();
neiVol = min(neiVol, tetQual);
}
}
}
minTetVolume.correctBoundaryConditions();
Info<< " Writing minTetVolume to " << minTetVolume.name() << endl;
minTetVolume.write();
}
// minPyrVolume
if (selectedFields.found("minPyrVolume"))
{
volScalarField minPyrVolume
(
IOobject
(
"minPyrVolume",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar("minPyrVolume", dimless, GREAT),
zeroGradientFvPatchScalarField::typeName
);
// Get owner and neighbour pyr volumes
scalarField ownPyrVol(mesh.nFaces());
scalarField neiPyrVol(mesh.nInternalFaces());
primitiveMeshTools::facePyramidVolume
(
mesh,
mesh.points(),
mesh.cellCentres(),
ownPyrVol,
neiPyrVol
);
// Get min pyr vol per cell
scalarField& cellFld = minPyrVolume.ref();
cellFld = GREAT;
const labelUList& own = mesh.owner();
const labelUList& nei = mesh.neighbour();
// Internal faces
forAll(own, facei)
{
cellFld[own[facei]] = min(cellFld[own[facei]], ownPyrVol[facei]);
cellFld[nei[facei]] = min(cellFld[nei[facei]], neiPyrVol[facei]);
}
// Patch faces
for (const auto& fvp : minPyrVolume.boundaryField())
{
const labelUList& fc = fvp.patch().faceCells();
forAll(fc, i)
{
const label meshFacei = fvp.patch().start();
cellFld[fc[i]] = min(cellFld[fc[i]], ownPyrVol[meshFacei]);
}
}
minPyrVolume.correctBoundaryConditions();
Info<< " Writing minPyrVolume to " << minPyrVolume.name() << endl;
minPyrVolume.write();
if (writeFaceFields)
{
scalarField minFacePyrVol(neiPyrVol);
minFacePyrVol = min
(
minFacePyrVol,
SubField<scalar>(ownPyrVol, mesh.nInternalFaces())
);
writeSurfaceField(mesh, "face_minPyrVolume", minFacePyrVol);
}
}
if (selectedFields.found("cellRegion"))
{
volScalarField cellRegion
(
IOobject
(
"cellRegion",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(dimless, Zero),
calculatedFvPatchScalarField::typeName
);
regionSplit rs(mesh);
forAll(rs, celli)
{
cellRegion[celli] = rs[celli];
}
cellRegion.correctBoundaryConditions();
Info<< " Writing cell region to " << cellRegion.name() << endl;
cellRegion.write();
}
if (selectedFields.found("wallDistance"))
{
// See if wallDist.method entry in fvSchemes before calling factory
// method of wallDist. Have 'failing' version of wallDist::New instead?
const dictionary& schemesDict =
static_cast<const fvSchemes&>(mesh).schemesDict();
if (schemesDict.found("wallDist"))
{
if (schemesDict.subDict("wallDist").found("method"))
{
// Wall distance
volScalarField y("wallDistance", wallDist::New(mesh).y());
Info<< " Writing wall distance to " << y.name() << endl;
y.write();
// Wall-reflection vectors
//const volVectorField& n = wallDist::New(mesh).n();
//Info<< " Writing wall normal to " << n.name() << endl;
//n.write();
}
}
}
if (selectedFields.found("cellZone"))
{
volScalarField cellZone
(
IOobject
(
"cellZone",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(scalar(-1)),
calculatedFvPatchScalarField::typeName
);
const cellZoneMesh& czs = mesh.cellZones();
for (const auto& zone : czs)
{
UIndirectList<scalar>(cellZone, zone) = zone.index();
}
cellZone.correctBoundaryConditions();
Info<< " Writing cell zoning to " << cellZone.name() << endl;
cellZone.write();
}
if (selectedFields.found("faceZone"))
{
// Determine for each face the zone index (scalar for ease of
// manipulation)
scalarField zoneID(mesh.nFaces(), -1);
const faceZoneMesh& czs = mesh.faceZones();
for (const auto& zone : czs)
{
UIndirectList<scalar>(zoneID, zone) = zone.index();
}
// Split into internal and boundary values
surfaceScalarField faceZone
(
IOobject
(
"faceZone",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh,
dimensionedScalar(scalar(-1)),
calculatedFvsPatchScalarField::typeName
);
faceZone.primitiveFieldRef() =
SubField<scalar>(zoneID, mesh.nInternalFaces());
surfaceScalarField::Boundary& bfld = faceZone.boundaryFieldRef();
for (auto& pfld : bfld)
{
const fvPatch& fvp = pfld.patch();
pfld == SubField<scalar>(zoneID, fvp.size(), fvp.start());
}
//faceZone.correctBoundaryConditions();
Info<< " Writing face zoning to " << faceZone.name() << endl;
faceZone.write();
}
Info<< endl;
}