openfoam/applications/utilities/preProcessing/mapFields/mapFields.C
2023-03-10 14:16:32 +00:00

679 lines
17 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2018-2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
mapFields
Group
grpPreProcessingUtilities
Description
Maps volume fields from one mesh to another, reading and
interpolating all fields present in the time directory of both cases.
Parallel and non-parallel cases are handled without the need to reconstruct
them first.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "meshToMesh0.H"
#include "processorFvPatch.H"
#include "MapMeshes.H"
#include "decompositionModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int readNumProcs
(
const argList& args,
const word& optionName,
const Time& runTime
)
{
return decompositionMethod::nDomains
(
IOdictionary
(
IOobject::selectIO
(
IOobject
(
decompositionModel::canonicalName,
runTime.system(),
runTime,
IOobject::MUST_READ,
IOobject::NO_WRITE,
IOobject::NO_REGISTER
),
args.getOrDefault<fileName>(optionName, "")
)
)
);
}
void mapConsistentMesh
(
const fvMesh& meshSource,
const fvMesh& meshTarget,
const meshToMesh0::order& mapOrder,
const bool subtract
)
{
if (subtract)
{
MapConsistentMesh<minusEqOp>
(
meshSource,
meshTarget,
mapOrder
);
}
else
{
MapConsistentMesh<eqOp>
(
meshSource,
meshTarget,
mapOrder
);
}
}
void mapSubMesh
(
const fvMesh& meshSource,
const fvMesh& meshTarget,
const HashTable<word>& patchMap,
const wordList& cuttingPatches,
const meshToMesh0::order& mapOrder,
const bool subtract
)
{
if (subtract)
{
MapSubMesh<minusEqOp>
(
meshSource,
meshTarget,
patchMap,
cuttingPatches,
mapOrder
);
}
else
{
MapSubMesh<eqOp>
(
meshSource,
meshTarget,
patchMap,
cuttingPatches,
mapOrder
);
}
}
void mapConsistentSubMesh
(
const fvMesh& meshSource,
const fvMesh& meshTarget,
const meshToMesh0::order& mapOrder,
const bool subtract
)
{
if (subtract)
{
MapConsistentSubMesh<minusEqOp>
(
meshSource,
meshTarget,
mapOrder
);
}
else
{
MapConsistentSubMesh<eqOp>
(
meshSource,
meshTarget,
mapOrder
);
}
}
wordList addProcessorPatches
(
const fvMesh& meshTarget,
const wordList& cuttingPatches
)
{
// Add the processor patches to the cutting list
HashTable<label> cuttingPatchTable;
forAll(cuttingPatches, i)
{
cuttingPatchTable.insert(cuttingPatches[i], i);
}
forAll(meshTarget.boundary(), patchi)
{
if (isA<processorFvPatch>(meshTarget.boundary()[patchi]))
{
if
(
!cuttingPatchTable.found
(
meshTarget.boundaryMesh()[patchi].name()
)
)
{
cuttingPatchTable.insert
(
meshTarget.boundaryMesh()[patchi].name(),
-1
);
}
}
}
return cuttingPatchTable.toc();
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Map volume fields from one mesh to another"
);
argList::noParallel();
argList::addArgument("sourceCase");
argList::addOption
(
"sourceTime",
"scalar|'latestTime'",
"Specify the source time"
);
argList::addOption
(
"sourceRegion",
"word",
"Specify the source region"
);
argList::addOption
(
"targetRegion",
"word",
"Specify the target region"
);
argList::addBoolOption
(
"parallelSource",
"The source is decomposed"
);
argList::addBoolOption
(
"parallelTarget",
"The target is decomposed"
);
argList::addBoolOption
(
"consistent",
"Source and target geometry and boundary conditions identical"
);
argList::addOption
(
"mapMethod",
"word",
"Specify the mapping method"
);
argList::addBoolOption
(
"subtract",
"Subtract mapped source from target"
);
argList::addOption
(
"sourceDecomposeParDict",
"file",
"Read decomposePar dictionary from specified location"
);
argList::addOption
(
"targetDecomposeParDict",
"file",
"Read decomposePar dictionary from specified location"
);
argList args(argc, argv);
if (!args.check())
{
FatalError.exit();
}
#include "foamDlOpenLibs.H"
fileName rootDirTarget(args.rootPath());
fileName caseDirTarget(args.globalCaseName());
const auto casePath = args.get<fileName>(1);
const fileName rootDirSource = casePath.path().toAbsolute();
const fileName caseDirSource = casePath.name();
Info<< "Source: " << rootDirSource << ' ' << caseDirSource;
word sourceRegion(polyMesh::defaultRegion);
if (args.readIfPresent("sourceRegion", sourceRegion))
{
Info<< " (region " << sourceRegion << ')';
}
Info<< endl;
Info<< "Target: " << rootDirTarget << ' ' << caseDirTarget;
word targetRegion(polyMesh::defaultRegion);
if (args.readIfPresent("targetRegion", targetRegion))
{
Info<< " (region " << targetRegion << ')';
}
Info<< endl;
const bool parallelSource = args.found("parallelSource");
const bool parallelTarget = args.found("parallelTarget");
const bool consistent = args.found("consistent");
meshToMesh0::order mapOrder = meshToMesh0::INTERPOLATE;
if (args.found("mapMethod"))
{
const word mapMethod(args["mapMethod"]);
if (mapMethod == "mapNearest")
{
mapOrder = meshToMesh0::MAP;
}
else if (mapMethod == "interpolate")
{
mapOrder = meshToMesh0::INTERPOLATE;
}
else if (mapMethod == "cellPointInterpolate")
{
mapOrder = meshToMesh0::CELL_POINT_INTERPOLATE;
}
else
{
FatalErrorInFunction
<< "Unknown mapMethod " << mapMethod << ". Valid options are: "
<< "mapNearest, interpolate and cellPointInterpolate"
<< exit(FatalError);
}
Info<< "Mapping method: " << mapMethod << endl;
}
const bool subtract = args.found("subtract");
if (subtract)
{
Info<< "Subtracting mapped source field from target" << endl;
}
#include "createTimes.H"
HashTable<word> patchMap;
wordList cuttingPatches;
if (!consistent)
{
IOdictionary mapFieldsDict
(
IOobject
(
"mapFieldsDict",
runTimeTarget.system(),
runTimeTarget,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE,
IOobject::NO_REGISTER
)
);
mapFieldsDict.readEntry("patchMap", patchMap);
mapFieldsDict.readEntry("cuttingPatches", cuttingPatches);
}
if (parallelSource && !parallelTarget)
{
const int nProcs = readNumProcs
(
args,
"sourceDecomposeParDict",
runTimeSource
);
Info<< "Create target mesh\n" << endl;
fvMesh meshTarget
(
IOobject
(
targetRegion,
runTimeTarget.timeName(),
runTimeTarget
)
);
Info<< "Target mesh size: " << meshTarget.nCells() << endl;
for (int proci=0; proci<nProcs; proci++)
{
Info<< nl << "Source processor " << proci << endl;
Time runTimeSource
(
Time::controlDictName,
rootDirSource,
caseDirSource/("processor" + Foam::name(proci))
);
#include "setTimeIndex.H"
fvMesh meshSource
(
IOobject
(
sourceRegion,
runTimeSource.timeName(),
runTimeSource
)
);
Info<< "mesh size: " << meshSource.nCells() << endl;
if (consistent)
{
mapConsistentSubMesh
(
meshSource,
meshTarget,
mapOrder,
subtract
);
}
else
{
mapSubMesh
(
meshSource,
meshTarget,
patchMap,
cuttingPatches,
mapOrder,
subtract
);
}
}
}
else if (!parallelSource && parallelTarget)
{
const int nProcs = readNumProcs
(
args,
"targetDecomposeParDict",
runTimeTarget
);
Info<< "Create source mesh\n" << endl;
#include "setTimeIndex.H"
fvMesh meshSource
(
IOobject
(
sourceRegion,
runTimeSource.timeName(),
runTimeSource
)
);
Info<< "Source mesh size: " << meshSource.nCells() << endl;
for (int proci=0; proci<nProcs; proci++)
{
Info<< nl << "Target processor " << proci << endl;
Time runTimeTarget
(
Time::controlDictName,
rootDirTarget,
caseDirTarget/("processor" + Foam::name(proci))
);
fvMesh meshTarget
(
IOobject
(
targetRegion,
runTimeTarget.timeName(),
runTimeTarget
)
);
Info<< "mesh size: " << meshTarget.nCells() << endl;
if (consistent)
{
mapConsistentSubMesh
(
meshSource,
meshTarget,
mapOrder,
subtract
);
}
else
{
mapSubMesh
(
meshSource,
meshTarget,
patchMap,
addProcessorPatches(meshTarget, cuttingPatches),
mapOrder,
subtract
);
}
}
}
else if (parallelSource && parallelTarget)
{
const int nProcsSource = readNumProcs
(
args,
"sourceDecomposeParDict",
runTimeSource
);
const int nProcsTarget = readNumProcs
(
args,
"targetDecomposeParDict",
runTimeTarget
);
List<boundBox> bbsTarget(nProcsTarget);
List<bool> bbsTargetSet(nProcsTarget, false);
for (int procISource=0; procISource<nProcsSource; procISource++)
{
Info<< nl << "Source processor " << procISource << endl;
Time runTimeSource
(
Time::controlDictName,
rootDirSource,
caseDirSource/("processor" + Foam::name(procISource))
);
#include "setTimeIndex.H"
fvMesh meshSource
(
IOobject
(
sourceRegion,
runTimeSource.timeName(),
runTimeSource
)
);
Info<< "mesh size: " << meshSource.nCells() << endl;
boundBox bbSource(meshSource.bounds());
for (int procITarget=0; procITarget<nProcsTarget; procITarget++)
{
if
(
!bbsTargetSet[procITarget]
|| (
bbsTargetSet[procITarget]
&& bbsTarget[procITarget].overlaps(bbSource)
)
)
{
Info<< nl << "Target processor " << procITarget << endl;
Time runTimeTarget
(
Time::controlDictName,
rootDirTarget,
caseDirTarget/("processor" + Foam::name(procITarget))
);
fvMesh meshTarget
(
IOobject
(
targetRegion,
runTimeTarget.timeName(),
runTimeTarget
)
);
Info<< "mesh size: " << meshTarget.nCells() << endl;
bbsTarget[procITarget] = meshTarget.bounds();
bbsTargetSet[procITarget] = true;
if (bbsTarget[procITarget].overlaps(bbSource))
{
if (consistent)
{
mapConsistentSubMesh
(
meshSource,
meshTarget,
mapOrder,
subtract
);
}
else
{
mapSubMesh
(
meshSource,
meshTarget,
patchMap,
addProcessorPatches(meshTarget, cuttingPatches),
mapOrder,
subtract
);
}
}
}
}
}
}
else
{
#include "setTimeIndex.H"
Info<< "Create meshes\n" << endl;
fvMesh meshSource
(
IOobject
(
sourceRegion,
runTimeSource.timeName(),
runTimeSource
)
);
fvMesh meshTarget
(
IOobject
(
targetRegion,
runTimeTarget.timeName(),
runTimeTarget
)
);
Info<< "Source mesh size: " << meshSource.nCells() << tab
<< "Target mesh size: " << meshTarget.nCells() << nl << endl;
if (consistent)
{
mapConsistentMesh(meshSource, meshTarget, mapOrder, subtract);
}
else
{
mapSubMesh
(
meshSource,
meshTarget,
patchMap,
cuttingPatches,
mapOrder,
subtract
);
}
}
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //