openfoam/applications/solvers/multiphase/reactingTwoPhaseEulerFoam/phaseSystems/twoPhaseSystem/twoPhaseSystem.C
2015-06-29 11:53:20 +01:00

423 lines
11 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2013-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "twoPhaseSystem.H"
#include "dragModel.H"
#include "virtualMassModel.H"
#include "MULES.H"
#include "subCycle.H"
#include "fvcDdt.H"
#include "fvcDiv.H"
#include "fvcSnGrad.H"
#include "fvcFlux.H"
#include "fvcSup.H"
#include "fvmDdt.H"
#include "fvmLaplacian.H"
#include "fvmSup.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(twoPhaseSystem, 0);
defineRunTimeSelectionTable(twoPhaseSystem, dictionary);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::twoPhaseSystem::twoPhaseSystem
(
const fvMesh& mesh
)
:
phaseSystem(mesh),
phase1_(phaseModels_[phaseNames_[0]]()),
phase2_(phaseModels_[phaseNames_[1]]())
{
phase2_.volScalarField::operator=(scalar(1) - phase1_);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::twoPhaseSystem::~twoPhaseSystem()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField>
Foam::twoPhaseSystem::sigma() const
{
return sigma
(
phasePairKey(phase1().name(), phase2().name())
);
}
Foam::tmp<Foam::volScalarField>
Foam::twoPhaseSystem::Kd() const
{
return Kd
(
phasePairKey(phase1().name(), phase2().name())
);
}
Foam::tmp<Foam::surfaceScalarField>
Foam::twoPhaseSystem::Kdf() const
{
return Kdf
(
phasePairKey(phase1().name(), phase2().name())
);
}
Foam::tmp<Foam::volScalarField>
Foam::twoPhaseSystem::Vm() const
{
return Vm
(
phasePairKey(phase1().name(), phase2().name())
);
}
Foam::tmp<Foam::surfaceScalarField>
Foam::twoPhaseSystem::Vmf() const
{
return Vmf
(
phasePairKey(phase1().name(), phase2().name())
);
}
Foam::tmp<Foam::volVectorField>
Foam::twoPhaseSystem::F() const
{
return F
(
phasePairKey(phase1().name(), phase2().name())
);
}
Foam::tmp<Foam::surfaceScalarField>
Foam::twoPhaseSystem::Ff() const
{
return Ff
(
phasePairKey(phase1().name(), phase2().name())
);
}
Foam::tmp<Foam::volScalarField>
Foam::twoPhaseSystem::D() const
{
return D
(
phasePairKey(phase1().name(), phase2().name())
);
}
Foam::tmp<Foam::volScalarField>
Foam::twoPhaseSystem::dmdt() const
{
return dmdt
(
phasePairKey(phase1().name(), phase2().name())
);
}
void Foam::twoPhaseSystem::solve()
{
const fvMesh& mesh = this->mesh();
const Time& runTime = mesh.time();
volScalarField& alpha1 = phase1_;
volScalarField& alpha2 = phase2_;
const dictionary& alphaControls = mesh.solverDict(alpha1.name());
label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));
label nAlphaCorr(readLabel(alphaControls.lookup("nAlphaCorr")));
bool LTS = fv::localEulerDdt::enabled(mesh);
word alphaScheme("div(phi," + alpha1.name() + ')');
word alpharScheme("div(phir," + alpha1.name() + ')');
const surfaceScalarField& phi = this->phi();
const surfaceScalarField& phi1 = phase1_.phi();
const surfaceScalarField& phi2 = phase2_.phi();
// Construct the dilatation rate source term
tmp<volScalarField::DimensionedInternalField> tdgdt;
if (phase1_.compressible() && phase2_.compressible())
{
tdgdt =
(
alpha2.dimensionedInternalField()
*phase1_.divU().dimensionedInternalField()
- alpha1.dimensionedInternalField()
*phase2_.divU().dimensionedInternalField()
);
}
else if (phase1_.compressible())
{
tdgdt =
(
alpha2.dimensionedInternalField()
*phase1_.divU().dimensionedInternalField()
);
}
else if (phase2_.compressible())
{
tdgdt =
(
- alpha1.dimensionedInternalField()
*phase2_.divU().dimensionedInternalField()
);
}
alpha1.correctBoundaryConditions();
surfaceScalarField alpha1f(fvc::interpolate(max(alpha1, scalar(0))));
surfaceScalarField phic("phic", phi);
surfaceScalarField phir("phir", phi1 - phi2);
tmp<surfaceScalarField> alphaDbyA;
if (notNull(phase1_.DbyA()) && notNull(phase2_.DbyA()))
{
surfaceScalarField DbyA(phase1_.DbyA() + phase2_.DbyA());
alphaDbyA =
fvc::interpolate(max(alpha1, scalar(0)))
*fvc::interpolate(max(alpha2, scalar(0)))
*DbyA;
phir += DbyA*fvc::snGrad(alpha1, "bounded")*mesh_.magSf();
}
for (int acorr=0; acorr<nAlphaCorr; acorr++)
{
volScalarField::DimensionedInternalField Sp
(
IOobject
(
"Sp",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar("Sp", dimless/dimTime, 0.0)
);
volScalarField::DimensionedInternalField Su
(
IOobject
(
"Su",
runTime.timeName(),
mesh
),
// Divergence term is handled explicitly to be
// consistent with the explicit transport solution
fvc::div(phi)*min(alpha1, scalar(1))
);
if (tdgdt.valid())
{
scalarField& dgdt = tdgdt();
forAll(dgdt, celli)
{
if (dgdt[celli] > 0.0)
{
Sp[celli] -= dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
Su[celli] += dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
}
else if (dgdt[celli] < 0.0)
{
Sp[celli] += dgdt[celli]/max(alpha1[celli], 1e-4);
}
}
}
surfaceScalarField alphaPhic1
(
fvc::flux
(
phic,
alpha1,
alphaScheme
)
+ fvc::flux
(
-fvc::flux(-phir, scalar(1) - alpha1, alpharScheme),
alpha1,
alpharScheme
)
);
// Ensure that the flux at inflow BCs is preserved
forAll(alphaPhic1.boundaryField(), patchi)
{
fvsPatchScalarField& alphaPhic1p =
alphaPhic1.boundaryField()[patchi];
if (!alphaPhic1p.coupled())
{
const scalarField& phi1p = phi1.boundaryField()[patchi];
const scalarField& alpha1p = alpha1.boundaryField()[patchi];
forAll(alphaPhic1p, facei)
{
if (phi1p[facei] < 0)
{
alphaPhic1p[facei] = alpha1p[facei]*phi1p[facei];
}
}
}
}
if (nAlphaSubCycles > 1)
{
tmp<volScalarField> trSubDeltaT;
if (LTS)
{
trSubDeltaT =
fv::localEulerDdt::localRSubDeltaT(mesh, nAlphaSubCycles);
}
for
(
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
!(++alphaSubCycle).end();
)
{
surfaceScalarField alphaPhic10(alphaPhic1);
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phi,
alphaPhic10,
(alphaSubCycle.index()*Sp)(),
(Su - (alphaSubCycle.index() - 1)*Sp*alpha1)(),
phase1_.alphaMax(),
0
);
if (alphaSubCycle.index() == 1)
{
phase1_.alphaPhi() = alphaPhic10;
}
else
{
phase1_.alphaPhi() += alphaPhic10;
}
}
phase1_.alphaPhi() /= nAlphaSubCycles;
}
else
{
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phi,
alphaPhic1,
Sp,
Su,
phase1_.alphaMax(),
0
);
phase1_.alphaPhi() = alphaPhic1;
}
if (alphaDbyA.valid())
{
fvScalarMatrix alpha1Eqn
(
fvm::ddt(alpha1) - fvc::ddt(alpha1)
- fvm::laplacian(alphaDbyA, alpha1, "bounded")
);
alpha1Eqn.relax();
alpha1Eqn.solve();
phase1_.alphaPhi() += alpha1Eqn.flux();
}
phase1_.alphaRhoPhi() =
fvc::interpolate(phase1_.rho())*phase1_.alphaPhi();
phase2_.alphaPhi() = phi - phase1_.alphaPhi();
alpha2 = scalar(1) - alpha1;
phase2_.alphaRhoPhi() =
fvc::interpolate(phase2_.rho())*phase2_.alphaPhi();
Info<< alpha1.name() << " volume fraction = "
<< alpha1.weightedAverage(mesh.V()).value()
<< " Min(alpha1) = " << min(alpha1).value()
<< " Max(alpha1) = " << max(alpha1).value()
<< endl;
}
}
const Foam::dragModel& Foam::twoPhaseSystem::drag(const phaseModel& phase) const
{
return lookupSubModel<dragModel>(phase, otherPhase(phase));
}
const Foam::virtualMassModel&
Foam::twoPhaseSystem::virtualMass(const phaseModel& phase) const
{
return lookupSubModel<virtualMassModel>(phase, otherPhase(phase));
}
// ************************************************************************* //