openfoam/applications/solvers/multiphase/reactingTwoPhaseEulerFoam/phaseSystems/PhaseSystems/InterfaceCompositionPhaseChangePhaseSystem/InterfaceCompositionPhaseChangePhaseSystem.C
Henry Weller d47a42458f reactingTwoPhaseEulerFoam: Added support for thermally-driven phase-change (boiling)
The interfacial temperature is assumed equal to the saturation
temperature.  Only a single species is considered volatile and the other
species to not affect the mass-transfer.
2015-07-16 14:12:03 +01:00

337 lines
9.3 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "InterfaceCompositionPhaseChangePhaseSystem.H"
#include "interfaceCompositionModel.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template<class BasePhaseSystem>
Foam::InterfaceCompositionPhaseChangePhaseSystem<BasePhaseSystem>::
InterfaceCompositionPhaseChangePhaseSystem
(
const fvMesh& mesh
)
:
HeatAndMassTransferPhaseSystem<BasePhaseSystem>(mesh)
{
this->generatePairsAndSubModels
(
"interfaceComposition",
interfaceCompositionModels_
);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
template<class BasePhaseSystem>
Foam::InterfaceCompositionPhaseChangePhaseSystem<BasePhaseSystem>::
~InterfaceCompositionPhaseChangePhaseSystem()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
template<class BasePhaseSystem>
Foam::autoPtr<Foam::phaseSystem::massTransferTable>
Foam::InterfaceCompositionPhaseChangePhaseSystem<BasePhaseSystem>::
massTransfer() const
{
// Create a mass transfer matrix for each species of each phase
autoPtr<phaseSystem::massTransferTable> eqnsPtr
(
new phaseSystem::massTransferTable()
);
phaseSystem::massTransferTable& eqns = eqnsPtr();
forAllConstIter
(
phaseSystem::phaseModelTable,
this->phaseModels_,
phaseModelIter
)
{
const phaseModel& phase(phaseModelIter());
const PtrList<volScalarField>& Yi = phase.Y();
forAll(Yi, i)
{
eqns.insert
(
Yi[i].name(),
new fvScalarMatrix(Yi[i], dimMass/dimTime)
);
}
}
// Reset the interfacial mass flow rates
forAllConstIter
(
phaseSystem::phasePairTable,
this->phasePairs_,
phasePairIter
)
{
const phasePair& pair(phasePairIter());
if (pair.ordered())
{
continue;
}
*this->dmdt_[pair] =
*this->dmdtExplicit_[pair];
*this->dmdtExplicit_[pair] =
dimensionedScalar("zero", dimDensity/dimTime, 0);
}
// Sum up the contribution from each interface composition model
forAllConstIter
(
interfaceCompositionModelTable,
interfaceCompositionModels_,
interfaceCompositionModelIter
)
{
const interfaceCompositionModel& compositionModel
(
interfaceCompositionModelIter()
);
const phasePair& pair
(
this->phasePairs_[interfaceCompositionModelIter.key()]
);
const phaseModel& phase = pair.phase1();
const phaseModel& otherPhase = pair.phase2();
const phasePairKey key(phase.name(), otherPhase.name());
const volScalarField& Tf(*this->Tf_[key]);
volScalarField& dmdtExplicit(*this->dmdtExplicit_[key]);
volScalarField& dmdt(*this->dmdt_[key]);
scalar dmdtSign(Pair<word>::compare(this->dmdt_.find(key).key(), key));
const volScalarField K
(
this->massTransferModels_[key][phase.name()]->K()
);
forAllConstIter
(
hashedWordList,
compositionModel.species(),
memberIter
)
{
const word& member = *memberIter;
const word name
(
IOobject::groupName(member, phase.name())
);
const word otherName
(
IOobject::groupName(member, otherPhase.name())
);
const volScalarField KD
(
K*compositionModel.D(member)
);
const volScalarField Yf
(
compositionModel.Yf(member, Tf)
);
// Implicit transport through the phase
*eqns[name] +=
phase.rho()*KD*Yf
- fvm::Sp(phase.rho()*KD, eqns[name]->psi());
// Sum the mass transfer rate
dmdtExplicit += dmdtSign*phase.rho()*KD*Yf;
dmdt -= dmdtSign*phase.rho()*KD*eqns[name]->psi();
// Explicit transport out of the other phase
if (eqns.found(otherName))
{
*eqns[otherName] -=
otherPhase.rho()*KD*compositionModel.dY(member, Tf);
}
}
}
return eqnsPtr;
}
template<class BasePhaseSystem>
void Foam::InterfaceCompositionPhaseChangePhaseSystem<BasePhaseSystem>::
correctThermo()
{
BasePhaseSystem::correctThermo();
// This loop solves for the interface temperatures, Tf, and updates the
// interface composition models.
//
// The rate of heat transfer to the interface must equal the latent heat
// consumed at the interface, i.e.:
//
// H1*(T1 - Tf) + H2*(T2 - Tf) == mDotL
// == K*rho*(Yfi - Yi)*Li
//
// Yfi is likely to be a strong non-linear (typically exponential) function
// of Tf, so the solution for the temperature is newton-accelerated
forAllConstIter
(
phaseSystem::phasePairTable,
this->phasePairs_,
phasePairIter
)
{
const phasePair& pair(phasePairIter());
if (pair.ordered())
{
continue;
}
const phasePairKey key12(pair.first(), pair.second(), true);
const phasePairKey key21(pair.second(), pair.first(), true);
volScalarField H1(this->heatTransferModels_[pair][pair.first()]->K());
volScalarField H2(this->heatTransferModels_[pair][pair.second()]->K());
dimensionedScalar HSmall("small", heatTransferModel::dimK, SMALL);
volScalarField mDotL
(
IOobject
(
"mDotL",
this->mesh().time().timeName(),
this->mesh()
),
this->mesh(),
dimensionedScalar("zero", dimEnergy/dimVolume/dimTime, 0)
);
volScalarField mDotLPrime
(
IOobject
(
"mDotLPrime",
this->mesh().time().timeName(),
this->mesh()
),
this->mesh(),
dimensionedScalar("zero", mDotL.dimensions()/dimTemperature, 0)
);
volScalarField& Tf = *this->Tf_[pair];
// Add latent heats from forward and backward models
if (this->interfaceCompositionModels_.found(key12))
{
this->interfaceCompositionModels_[key12]->addMDotL
(
this->massTransferModels_[pair][pair.first()]->K(),
Tf,
mDotL,
mDotLPrime
);
}
if (this->interfaceCompositionModels_.found(key21))
{
this->interfaceCompositionModels_[key21]->addMDotL
(
this->massTransferModels_[pair][pair.second()]->K(),
Tf,
mDotL,
mDotLPrime
);
}
// Update the interface temperature by applying one step of newton's
// method to the interface relation
Tf -=
(
H1*(Tf - pair.phase1().thermo().T())
+ H2*(Tf - pair.phase2().thermo().T())
+ mDotL
)
/(
max(H1 + H2 + mDotLPrime, HSmall)
);
Tf.correctBoundaryConditions();
Info<< "Tf." << pair.name()
<< ": min = " << min(Tf.internalField())
<< ", mean = " << average(Tf.internalField())
<< ", max = " << max(Tf.internalField())
<< endl;
// Update the interface compositions
if (this->interfaceCompositionModels_.found(key12))
{
this->interfaceCompositionModels_[key12]->update(Tf);
}
if (this->interfaceCompositionModels_.found(key21))
{
this->interfaceCompositionModels_[key21]->update(Tf);
}
}
}
template<class BasePhaseSystem>
bool Foam::InterfaceCompositionPhaseChangePhaseSystem<BasePhaseSystem>::read()
{
if (BasePhaseSystem::read())
{
bool readOK = true;
// Models ...
return readOK;
}
else
{
return false;
}
}
// ************************************************************************* //