openfoam/src/edgeMesh/extendedFeatureEdgeMesh/extendedFeatureEdgeMesh.C

1149 lines
30 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "extendedFeatureEdgeMesh.H"
#include "triSurface.H"
#include "Random.H"
#include "Time.H"
#include "meshTools.H"
#include "linePointRef.H"
#include "ListListOps.H"
#include "OFstream.H"
#include "IFstream.H"
#include "unitConversion.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(Foam::extendedFeatureEdgeMesh, 0);
Foam::scalar Foam::extendedFeatureEdgeMesh::cosNormalAngleTol_ =
Foam::cos(degToRad(0.1));
Foam::label Foam::extendedFeatureEdgeMesh::convexStart_ = 0;
Foam::label Foam::extendedFeatureEdgeMesh::externalStart_ = 0;
Foam::label Foam::extendedFeatureEdgeMesh::nPointTypes = 4;
Foam::label Foam::extendedFeatureEdgeMesh::nEdgeTypes = 5;
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::extendedFeatureEdgeMesh::extendedFeatureEdgeMesh(const IOobject& io)
:
regIOobject(io),
edgeMesh(pointField(0), edgeList(0)),
concaveStart_(0),
mixedStart_(0),
nonFeatureStart_(0),
internalStart_(0),
flatStart_(0),
openStart_(0),
multipleStart_(0),
normals_(0),
edgeDirections_(0),
edgeNormals_(0),
featurePointNormals_(0),
regionEdges_(0),
pointTree_(),
edgeTree_(),
edgeTreesByType_()
{
if
(
io.readOpt() == IOobject::MUST_READ
|| io.readOpt() == IOobject::MUST_READ_IF_MODIFIED
|| (io.readOpt() == IOobject::READ_IF_PRESENT && headerOk())
)
{
if (readOpt() == IOobject::MUST_READ_IF_MODIFIED)
{
WarningIn
(
"extendedFeatureEdgeMesh::extendedFeatureEdgeMesh"
"(const IOobject&)"
) << "Specified IOobject::MUST_READ_IF_MODIFIED but class"
<< " does not support automatic rereading."
<< endl;
}
Istream& is = readStream(typeName);
is >> *this
>> concaveStart_
>> mixedStart_
>> nonFeatureStart_
>> internalStart_
>> flatStart_
>> openStart_
>> multipleStart_
>> normals_
>> edgeNormals_
>> featurePointNormals_
>> regionEdges_;
close();
{
// Calculate edgeDirections
const edgeList& eds(edges());
const pointField& pts(points());
edgeDirections_.setSize(eds.size());
forAll(eds, eI)
{
edgeDirections_[eI] = eds[eI].vec(pts);
}
edgeDirections_ /= mag(edgeDirections_);
}
}
if (debug)
{
Pout<< "extendedFeatureEdgeMesh::extendedFeatureEdgeMesh :"
<< " constructed from IOobject :"
<< " points:" << points().size()
<< " edges:" << edges().size()
<< endl;
}
}
Foam::extendedFeatureEdgeMesh::extendedFeatureEdgeMesh
(
const IOobject& io,
const extendedFeatureEdgeMesh& fem
)
:
regIOobject(io),
edgeMesh(fem),
concaveStart_(fem.concaveStart()),
mixedStart_(fem.mixedStart()),
nonFeatureStart_(fem.nonFeatureStart()),
internalStart_(fem.internalStart()),
flatStart_(fem.flatStart()),
openStart_(fem.openStart()),
multipleStart_(fem.multipleStart()),
normals_(fem.normals()),
edgeDirections_(fem.edgeDirections()),
edgeNormals_(fem.edgeNormals()),
featurePointNormals_(fem.featurePointNormals()),
regionEdges_(fem.regionEdges()),
pointTree_(),
edgeTree_(),
edgeTreesByType_()
{}
Foam::extendedFeatureEdgeMesh::extendedFeatureEdgeMesh
(
const IOobject& io,
const Xfer<pointField>& pointLst,
const Xfer<edgeList>& edgeLst
)
:
regIOobject(io),
edgeMesh(pointLst, edgeLst),
concaveStart_(0),
mixedStart_(0),
nonFeatureStart_(0),
internalStart_(0),
flatStart_(0),
openStart_(0),
multipleStart_(0),
normals_(0),
edgeDirections_(0),
edgeNormals_(0),
featurePointNormals_(0),
regionEdges_(0),
pointTree_(),
edgeTree_(),
edgeTreesByType_()
{}
Foam::extendedFeatureEdgeMesh::extendedFeatureEdgeMesh
(
const surfaceFeatures& sFeat,
const objectRegistry& obr,
const fileName& sFeatFileName
)
:
regIOobject
(
IOobject
(
sFeatFileName,
obr.time().constant(),
"extendedFeatureEdgeMesh",
obr,
IOobject::NO_READ,
IOobject::NO_WRITE
)
),
edgeMesh(pointField(0), edgeList(0)),
concaveStart_(-1),
mixedStart_(-1),
nonFeatureStart_(-1),
internalStart_(-1),
flatStart_(-1),
openStart_(-1),
multipleStart_(-1),
normals_(0),
edgeDirections_(0),
edgeNormals_(0),
featurePointNormals_(0),
regionEdges_(0),
pointTree_(),
edgeTree_(),
edgeTreesByType_()
{
// Extract and reorder the data from surfaceFeatures
// References to the surfaceFeatures data
const triSurface& surf(sFeat.surface());
const pointField& sFeatLocalPts(surf.localPoints());
const edgeList& sFeatEds(surf.edges());
// Filling the extendedFeatureEdgeMesh with the raw geometrical data.
label nFeatEds = sFeat.featureEdges().size();
DynamicList<point> tmpPts;
edgeList eds(nFeatEds);
DynamicList<vector> norms;
vectorField edgeDirections(nFeatEds);
labelListList edgeNormals(nFeatEds);
DynamicList<label> regionEdges;
// Mapping between old and new indices, there is entry in the map for each
// of sFeatLocalPts, -1 means that this point hasn't been used (yet), >= 0
// corresponds to the index
labelList pointMap(sFeatLocalPts.size(), -1);
// Noting when the normal of a face has been used so not to duplicate
labelList faceMap(surf.size(), -1);
// Collecting the status of edge for subsequent sorting
List<edgeStatus> edStatus(nFeatEds, NONE);
forAll(sFeat.featurePoints(), i)
{
label sFPI = sFeat.featurePoints()[i];
tmpPts.append(sFeatLocalPts[sFPI]);
pointMap[sFPI] = tmpPts.size() - 1;
}
// All feature points have been added
nonFeatureStart_ = tmpPts.size();
forAll(sFeat.featureEdges(), i)
{
label sFEI = sFeat.featureEdges()[i];
const edge& fE(sFeatEds[sFEI]);
// Check to see if the points have been already used
if (pointMap[fE.start()] == -1)
{
tmpPts.append(sFeatLocalPts[fE.start()]);
pointMap[fE.start()] = tmpPts.size() - 1;
}
eds[i].start() = pointMap[fE.start()];
if (pointMap[fE.end()] == -1)
{
tmpPts.append(sFeatLocalPts[fE.end()]);
pointMap[fE.end()] = tmpPts.size() - 1;
}
eds[i].end() = pointMap[fE.end()];
// Pick up the faces adjacent to the feature edge
const labelList& eFaces = surf.edgeFaces()[sFEI];
edgeNormals[i].setSize(eFaces.size());
forAll(eFaces, j)
{
label eFI = eFaces[j];
// Check to see if the points have been already used
if (faceMap[eFI] == -1)
{
norms.append(surf.faceNormals()[eFI]);
faceMap[eFI] = norms.size() - 1;
}
edgeNormals[i][j] = faceMap[eFI];
}
vector fC0tofC1(vector::zero);
if (eFaces.size() == 2)
{
fC0tofC1 =
surf[eFaces[1]].centre(surf.points())
- surf[eFaces[0]].centre(surf.points());
}
edStatus[i] = classifyEdge(norms, edgeNormals[i], fC0tofC1);
edgeDirections[i] = fE.vec(sFeatLocalPts);
if (i < sFeat.nRegionEdges())
{
regionEdges.append(i);
}
}
// Reorder the edges by classification
List<DynamicList<label> > allEds(nEdgeTypes);
DynamicList<label>& externalEds(allEds[0]);
DynamicList<label>& internalEds(allEds[1]);
DynamicList<label>& flatEds(allEds[2]);
DynamicList<label>& openEds(allEds[3]);
DynamicList<label>& multipleEds(allEds[4]);
forAll(eds, i)
{
edgeStatus eStat = edStatus[i];
if (eStat == EXTERNAL)
{
externalEds.append(i);
}
else if (eStat == INTERNAL)
{
internalEds.append(i);
}
else if (eStat == FLAT)
{
flatEds.append(i);
}
else if (eStat == OPEN)
{
openEds.append(i);
}
else if (eStat == MULTIPLE)
{
multipleEds.append(i);
}
else if (eStat == NONE)
{
FatalErrorIn
(
"Foam::extendedFeatureEdgeMesh::extendedFeatureEdgeMesh"
"("
" const surfaceFeatures& sFeat,"
" const objectRegistry& obr,"
" const fileName& sFeatFileName"
")"
)
<< nl << "classifyEdge returned NONE on edge "
<< eds[i]
<< ". There is a problem with definition of this edge."
<< nl << abort(FatalError);
}
}
internalStart_ = externalEds.size();
flatStart_ = internalStart_ + internalEds.size();
openStart_ = flatStart_ + flatEds.size();
multipleStart_ = openStart_ + openEds.size();
labelList edMap
(
ListListOps::combine<labelList>
(
allEds,
accessOp<labelList>()
)
);
edMap = invert(edMap.size(), edMap);
inplaceReorder(edMap, eds);
inplaceReorder(edMap, edStatus);
inplaceReorder(edMap, edgeDirections);
inplaceReorder(edMap, edgeNormals);
inplaceRenumber(edMap, regionEdges);
pointField pts(tmpPts);
// Initialise the edgeMesh
edgeMesh::operator=(edgeMesh(pts, eds));
// Initialise sorted edge related data
edgeDirections_ = edgeDirections/mag(edgeDirections);
edgeNormals_ = edgeNormals;
regionEdges_ = regionEdges;
// Normals are all now found and indirectly addressed, can also be stored
normals_ = vectorField(norms);
// Reorder the feature points by classification
List<DynamicList<label> > allPts(3);
DynamicList<label>& convexPts(allPts[0]);
DynamicList<label>& concavePts(allPts[1]);
DynamicList<label>& mixedPts(allPts[2]);
for (label i = 0; i < nonFeatureStart_; i++)
{
pointStatus ptStatus = classifyFeaturePoint(i);
if (ptStatus == CONVEX)
{
convexPts.append(i);
}
else if (ptStatus == CONCAVE)
{
concavePts.append(i);
}
else if (ptStatus == MIXED)
{
mixedPts.append(i);
}
else if (ptStatus == NONFEATURE)
{
FatalErrorIn
(
"Foam::extendedFeatureEdgeMesh::extendedFeatureEdgeMesh"
"("
" const surfaceFeatures& sFeat,"
" const objectRegistry& obr,"
" const fileName& sFeatFileName"
")"
)
<< nl << "classifyFeaturePoint returned NONFEATURE on point at "
<< points()[i]
<< ". There is a problem with definition of this feature point."
<< nl << abort(FatalError);
}
}
concaveStart_ = convexPts.size();
mixedStart_ = concaveStart_ + concavePts.size();
labelList ftPtMap
(
ListListOps::combine<labelList>
(
allPts,
accessOp<labelList>()
)
);
ftPtMap = invert(ftPtMap.size(), ftPtMap);
// Creating the ptMap from the ftPtMap with identity values up to the size
// of pts to create an oldToNew map for inplaceReorder
labelList ptMap(identity(pts.size()));
forAll(ftPtMap, i)
{
ptMap[i] = ftPtMap[i];
}
inplaceReorder(ptMap, pts);
forAll(eds, i)
{
inplaceRenumber(ptMap, eds[i]);
}
// Reinitialise the edgeMesh with sorted feature points and
// renumbered edges
edgeMesh::operator=(edgeMesh(pts, eds));
// Generate the featurePointNormals
labelListList featurePointNormals(nonFeatureStart_);
for (label i = 0; i < nonFeatureStart_; i++)
{
DynamicList<label> tmpFtPtNorms;
const labelList& ptEds = pointEdges()[i];
forAll(ptEds, j)
{
const labelList& ptEdNorms(edgeNormals[ptEds[j]]);
forAll(ptEdNorms, k)
{
if (findIndex(tmpFtPtNorms, ptEdNorms[k]) == -1)
{
bool addNormal = true;
// Check that the normal direction is unique at this feature
forAll(tmpFtPtNorms, q)
{
if
(
(normals_[ptEdNorms[k]] & normals_[tmpFtPtNorms[q]])
> cosNormalAngleTol_
)
{
// Parallel to an existing normal, do not add
addNormal = false;
break;
}
}
if (addNormal)
{
tmpFtPtNorms.append(ptEdNorms[k]);
}
}
}
}
featurePointNormals[i] = tmpFtPtNorms;
}
featurePointNormals_ = featurePointNormals;
}
Foam::extendedFeatureEdgeMesh::extendedFeatureEdgeMesh
(
const IOobject& io,
const pointField& pts,
const edgeList& eds,
label concaveStart,
label mixedStart,
label nonFeatureStart,
label internalStart,
label flatStart,
label openStart,
label multipleStart,
const vectorField& normals,
const vectorField& edgeDirections,
const labelListList& edgeNormals,
const labelListList& featurePointNormals,
const labelList& regionEdges
)
:
regIOobject(io),
edgeMesh(pts, eds),
concaveStart_(concaveStart),
mixedStart_(mixedStart),
nonFeatureStart_(nonFeatureStart),
internalStart_(internalStart),
flatStart_(flatStart),
openStart_(openStart),
multipleStart_(multipleStart),
normals_(normals),
edgeDirections_(edgeDirections),
edgeNormals_(edgeNormals),
featurePointNormals_(featurePointNormals),
regionEdges_(regionEdges),
pointTree_(),
edgeTree_(),
edgeTreesByType_()
{}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::extendedFeatureEdgeMesh::~extendedFeatureEdgeMesh()
{}
// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //
Foam::extendedFeatureEdgeMesh::pointStatus
Foam::extendedFeatureEdgeMesh::classifyFeaturePoint
(
label ptI
) const
{
labelList ptEds(pointEdges()[ptI]);
label nPtEds = ptEds.size();
label nExternal = 0;
label nInternal = 0;
if (nPtEds == 0)
{
// There are no edges attached to the point, this is a problem
return NONFEATURE;
}
forAll(ptEds, i)
{
edgeStatus edStat = getEdgeStatus(ptEds[i]);
if (edStat == EXTERNAL)
{
nExternal++;
}
else if (edStat == INTERNAL)
{
nInternal++;
}
}
if (nExternal == nPtEds)
{
return CONVEX;
}
else if (nInternal == nPtEds)
{
return CONCAVE;
}
else
{
return MIXED;
}
}
Foam::extendedFeatureEdgeMesh::edgeStatus
Foam::extendedFeatureEdgeMesh::classifyEdge
(
const List<vector>& norms,
const labelList& edNorms,
const vector& fC0tofC1
) const
{
label nEdNorms = edNorms.size();
if (nEdNorms == 1)
{
return OPEN;
}
else if (nEdNorms == 2)
{
const vector n0(norms[edNorms[0]]);
const vector n1(norms[edNorms[1]]);
if ((n0 & n1) > cosNormalAngleTol_)
{
return FLAT;
}
else if ((fC0tofC1 & n0) > 0.0)
{
return INTERNAL;
}
else
{
return EXTERNAL;
}
}
else if (nEdNorms > 2)
{
return MULTIPLE;
}
else
{
// There is a problem - the edge has no normals
return NONE;
}
}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void Foam::extendedFeatureEdgeMesh::nearestFeaturePoint
(
const point& sample,
scalar searchDistSqr,
pointIndexHit& info
) const
{
info = pointTree().findNearest
(
sample,
searchDistSqr
);
}
void Foam::extendedFeatureEdgeMesh::nearestFeatureEdge
(
const point& sample,
scalar searchDistSqr,
pointIndexHit& info
) const
{
info = edgeTree().findNearest
(
sample,
searchDistSqr
);
}
void Foam::extendedFeatureEdgeMesh::nearestFeatureEdge
(
const pointField& samples,
const scalarField& searchDistSqr,
List<pointIndexHit>& info
) const
{
info.setSize(samples.size());
forAll(samples, i)
{
nearestFeatureEdge
(
samples[i],
searchDistSqr[i],
info[i]
);
}
}
void Foam::extendedFeatureEdgeMesh::nearestFeatureEdgeByType
(
const point& sample,
const scalarField& searchDistSqr,
List<pointIndexHit>& info
) const
{
const PtrList<indexedOctree<treeDataEdge> >& edgeTrees = edgeTreesByType();
info.setSize(edgeTrees.size());
labelList sliceStarts(edgeTrees.size());
sliceStarts[0] = externalStart_;
sliceStarts[1] = internalStart_;
sliceStarts[2] = flatStart_;
sliceStarts[3] = openStart_;
sliceStarts[4] = multipleStart_;
forAll(edgeTrees, i)
{
info[i] = edgeTrees[i].findNearest
(
sample,
searchDistSqr[i]
);
// The index returned by the indexedOctree is local to the slice of
// edges it was supplied with, return the index to the value in the
// complete edge list
info[i].setIndex(info[i].index() + sliceStarts[i]);
}
}
void Foam::extendedFeatureEdgeMesh::allNearestFeatureEdges
(
const point& sample,
const scalar searchRadiusSqr,
List<pointIndexHit>& info
) const
{
const PtrList<indexedOctree<treeDataEdge> >& edgeTrees = edgeTreesByType();
info.setSize(edgeTrees.size());
labelList sliceStarts(edgeTrees.size());
sliceStarts[0] = externalStart_;
sliceStarts[1] = internalStart_;
sliceStarts[2] = flatStart_;
sliceStarts[3] = openStart_;
sliceStarts[4] = multipleStart_;
DynamicList<pointIndexHit> dynEdgeHit;
// Loop over all the feature edge types
forAll(edgeTrees, i)
{
// Pick up all the edges that intersect the search sphere
labelList elems = edgeTrees[i].findSphere
(
sample,
searchRadiusSqr
);
forAll(elems, elemI)
{
label index = elems[elemI];
label edgeI = edgeTrees[i].shapes().edgeLabels()[index];
const edge& e = edges()[edgeI];
pointHit hitPoint = e.line(points()).nearestDist(sample);
label hitIndex = index + sliceStarts[i];
pointIndexHit nearHit;
if (!hitPoint.hit())
{
nearHit = pointIndexHit(true, hitPoint.missPoint(), hitIndex);
}
else
{
nearHit = pointIndexHit(true, hitPoint.hitPoint(), hitIndex);
}
dynEdgeHit.append(nearHit);
}
}
info.transfer(dynEdgeHit);
}
const Foam::indexedOctree<Foam::treeDataPoint>&
Foam::extendedFeatureEdgeMesh::pointTree() const
{
if (pointTree_.empty())
{
Random rndGen(17301893);
// Slightly extended bb. Slightly off-centred just so on symmetric
// geometry there are less face/edge aligned items.
treeBoundBox bb
(
treeBoundBox(points()).extend(rndGen, 1E-4)
);
bb.min() -= point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
bb.max() += point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
const labelList featurePointLabels = identity(nonFeatureStart_);
pointTree_.reset
(
new indexedOctree<treeDataPoint>
(
treeDataPoint
(
points(),
featurePointLabels
),
bb, // bb
8, // maxLevel
10, // leafsize
3.0 // duplicity
)
);
}
return pointTree_();
}
const Foam::indexedOctree<Foam::treeDataEdge>&
Foam::extendedFeatureEdgeMesh::edgeTree() const
{
if (edgeTree_.empty())
{
Random rndGen(17301893);
// Slightly extended bb. Slightly off-centred just so on symmetric
// geometry there are less face/edge aligned items.
treeBoundBox bb
(
treeBoundBox(points()).extend(rndGen, 1E-4)
);
bb.min() -= point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
bb.max() += point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
labelList allEdges(identity(edges().size()));
edgeTree_.reset
(
new indexedOctree<treeDataEdge>
(
treeDataEdge
(
false, // cachebb
edges(), // edges
points(), // points
allEdges // selected edges
),
bb, // bb
8, // maxLevel
10, // leafsize
3.0 // duplicity
)
);
}
return edgeTree_();
}
const Foam::PtrList<Foam::indexedOctree<Foam::treeDataEdge> >&
Foam::extendedFeatureEdgeMesh::edgeTreesByType() const
{
if (edgeTreesByType_.size() == 0)
{
edgeTreesByType_.setSize(nEdgeTypes);
Random rndGen(872141);
// Slightly extended bb. Slightly off-centred just so on symmetric
// geometry there are less face/edge aligned items.
treeBoundBox bb
(
treeBoundBox(points()).extend(rndGen, 1E-4)
);
bb.min() -= point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
bb.max() += point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
labelListList sliceEdges(nEdgeTypes);
// External edges
sliceEdges[0] =
identity(internalStart_ - externalStart_) + externalStart_;
// Internal edges
sliceEdges[1] = identity(flatStart_ - internalStart_) + internalStart_;
// Flat edges
sliceEdges[2] = identity(openStart_ - flatStart_) + flatStart_;
// Open edges
sliceEdges[3] = identity(multipleStart_ - openStart_) + openStart_;
// Multiple edges
sliceEdges[4] =
identity(edges().size() - multipleStart_) + multipleStart_;
forAll(edgeTreesByType_, i)
{
edgeTreesByType_.set
(
i,
new indexedOctree<treeDataEdge>
(
treeDataEdge
(
false, // cachebb
edges(), // edges
points(), // points
sliceEdges[i] // selected edges
),
bb, // bb
8, // maxLevel
10, // leafsize
3.0 // duplicity
)
);
}
}
return edgeTreesByType_;
}
void Foam::extendedFeatureEdgeMesh::writeObj
(
const fileName& prefix
) const
{
Pout<< nl << "Writing extendedFeatureEdgeMesh components to " << prefix
<< endl;
label verti = 0;
edgeMesh::write(prefix + "_edgeMesh.obj");
OFstream convexFtPtStr(prefix + "_convexFeaturePts.obj");
Pout<< "Writing convex feature points to " << convexFtPtStr.name() << endl;
for(label i = 0; i < concaveStart_; i++)
{
meshTools::writeOBJ(convexFtPtStr, points()[i]);
}
OFstream concaveFtPtStr(prefix + "_concaveFeaturePts.obj");
Pout<< "Writing concave feature points to "
<< concaveFtPtStr.name() << endl;
for(label i = concaveStart_; i < mixedStart_; i++)
{
meshTools::writeOBJ(concaveFtPtStr, points()[i]);
}
OFstream mixedFtPtStr(prefix + "_mixedFeaturePts.obj");
Pout<< "Writing mixed feature points to " << mixedFtPtStr.name() << endl;
for(label i = mixedStart_; i < nonFeatureStart_; i++)
{
meshTools::writeOBJ(mixedFtPtStr, points()[i]);
}
OFstream mixedFtPtStructureStr(prefix + "_mixedFeaturePtsStructure.obj");
Pout<< "Writing mixed feature point structure to "
<< mixedFtPtStructureStr.name() << endl;
verti = 0;
for(label i = mixedStart_; i < nonFeatureStart_; i++)
{
const labelList& ptEds = pointEdges()[i];
forAll(ptEds, j)
{
const edge& e = edges()[ptEds[j]];
meshTools::writeOBJ(mixedFtPtStructureStr, points()[e[0]]); verti++;
meshTools::writeOBJ(mixedFtPtStructureStr, points()[e[1]]); verti++;
mixedFtPtStructureStr << "l " << verti-1 << ' ' << verti << endl;
}
}
OFstream externalStr(prefix + "_externalEdges.obj");
Pout<< "Writing external edges to " << externalStr.name() << endl;
verti = 0;
for (label i = externalStart_; i < internalStart_; i++)
{
const edge& e = edges()[i];
meshTools::writeOBJ(externalStr, points()[e[0]]); verti++;
meshTools::writeOBJ(externalStr, points()[e[1]]); verti++;
externalStr << "l " << verti-1 << ' ' << verti << endl;
}
OFstream internalStr(prefix + "_internalEdges.obj");
Pout<< "Writing internal edges to " << internalStr.name() << endl;
verti = 0;
for (label i = internalStart_; i < flatStart_; i++)
{
const edge& e = edges()[i];
meshTools::writeOBJ(internalStr, points()[e[0]]); verti++;
meshTools::writeOBJ(internalStr, points()[e[1]]); verti++;
internalStr << "l " << verti-1 << ' ' << verti << endl;
}
OFstream flatStr(prefix + "_flatEdges.obj");
Pout<< "Writing flat edges to " << flatStr.name() << endl;
verti = 0;
for (label i = flatStart_; i < openStart_; i++)
{
const edge& e = edges()[i];
meshTools::writeOBJ(flatStr, points()[e[0]]); verti++;
meshTools::writeOBJ(flatStr, points()[e[1]]); verti++;
flatStr << "l " << verti-1 << ' ' << verti << endl;
}
OFstream openStr(prefix + "_openEdges.obj");
Pout<< "Writing open edges to " << openStr.name() << endl;
verti = 0;
for (label i = openStart_; i < multipleStart_; i++)
{
const edge& e = edges()[i];
meshTools::writeOBJ(openStr, points()[e[0]]); verti++;
meshTools::writeOBJ(openStr, points()[e[1]]); verti++;
openStr << "l " << verti-1 << ' ' << verti << endl;
}
OFstream multipleStr(prefix + "_multipleEdges.obj");
Pout<< "Writing multiple edges to " << multipleStr.name() << endl;
verti = 0;
for (label i = multipleStart_; i < edges().size(); i++)
{
const edge& e = edges()[i];
meshTools::writeOBJ(multipleStr, points()[e[0]]); verti++;
meshTools::writeOBJ(multipleStr, points()[e[1]]); verti++;
multipleStr << "l " << verti-1 << ' ' << verti << endl;
}
OFstream regionStr(prefix + "_regionEdges.obj");
Pout<< "Writing region edges to " << regionStr.name() << endl;
verti = 0;
forAll(regionEdges_, i)
{
const edge& e = edges()[regionEdges_[i]];
meshTools::writeOBJ(regionStr, points()[e[0]]); verti++;
meshTools::writeOBJ(regionStr, points()[e[1]]); verti++;
regionStr << "l " << verti-1 << ' ' << verti << endl;
}
}
bool Foam::extendedFeatureEdgeMesh::writeData(Ostream& os) const
{
os << "// points, edges, concaveStart, mixedStart, nonFeatureStart, " << nl
<< "// internalStart, flatStart, openStart, multipleStart, " << nl
<< "// normals, edgeNormals, featurePointNormals, regionEdges" << nl
<< endl;
os << points() << nl
<< edges() << nl
<< concaveStart_ << token::SPACE
<< mixedStart_ << token::SPACE
<< nonFeatureStart_ << token::SPACE
<< internalStart_ << token::SPACE
<< flatStart_ << token::SPACE
<< openStart_ << token::SPACE
<< multipleStart_ << nl
<< normals_ << nl
<< edgeNormals_ << nl
<< featurePointNormals_ << nl
<< regionEdges_
<< endl;
return os.good();
}
// ************************************************************************* //