openfoam/src/OpenFOAM/meshes/polyMesh/polyBoundaryMesh/polyBoundaryMesh.C
Mark Olesen d938e01d7a ENH: refactor IOobject options
- IOobjectOption class encapsulates read/write, storage flags for
  lightweight handling, independent of objectRegistry etc.

ENH: add IOobject isReadRequired() and isReadOptional() queries

- encapsulates test of MUST_READ, MUST_READ_IF_MODIFIED,
  READ_IF_PRESENT for convenience / less clutter.

Example,

    if (isReadRequired() || (isReadOptional() && headerOk()))
    {
        ...
    }

Instead of

    if
    (
        (
            readOpt() == IOobject::MUST_READ
         || readOpt() == IOobject::MUST_READ_IF_MODIFIED
        )
     || (readOpt() == IOobject::READ_IF_PRESENT && headerOk())
    )
    {
        ...
    }
2022-10-04 15:51:26 +02:00

1313 lines
31 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2018-2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "polyBoundaryMesh.H"
#include "polyMesh.H"
#include "primitiveMesh.H"
#include "processorPolyPatch.H"
#include "PstreamBuffers.H"
#include "lduSchedule.H"
#include "globalMeshData.H"
#include "stringListOps.H"
#include "DynamicList.H"
#include "PtrListOps.H"
#include "edgeHashes.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(polyBoundaryMesh, 0);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
bool Foam::polyBoundaryMesh::hasGroupIDs() const
{
if (groupIDsPtr_)
{
// Use existing cache
return !groupIDsPtr_->empty();
}
const polyPatchList& patches = *this;
for (const polyPatch& p : patches)
{
if (!p.inGroups().empty())
{
return true;
}
}
return false;
}
void Foam::polyBoundaryMesh::calcGroupIDs() const
{
if (groupIDsPtr_)
{
return; // Or FatalError
}
groupIDsPtr_.reset(new HashTable<labelList>(16));
auto& groupLookup = *groupIDsPtr_;
const polyPatchList& patches = *this;
forAll(patches, patchi)
{
const wordList& groups = patches[patchi].inGroups();
for (const word& groupName : groups)
{
groupLookup(groupName).append(patchi);
}
}
// Remove groups that clash with patch names
forAll(patches, patchi)
{
if (groupLookup.erase(patches[patchi].name()))
{
WarningInFunction
<< "Removed group '" << patches[patchi].name()
<< "' which clashes with patch " << patchi
<< " of the same name."
<< endl;
}
}
}
bool Foam::polyBoundaryMesh::readContents(const bool allowReadIfPresent)
{
if
(
this->isReadRequired()
|| (allowReadIfPresent && this->isReadOptional() && this->headerOk())
)
{
// Warn for MUST_READ_IF_MODIFIED
warnNoRereading<polyBoundaryMesh>();
polyPatchList& patches = *this;
// Read polyPatchList
Istream& is = readStream(typeName);
// Read patches as entries
PtrList<entry> patchEntries(is);
patches.resize(patchEntries.size());
// Transcribe
forAll(patches, patchi)
{
patches.set
(
patchi,
polyPatch::New
(
patchEntries[patchi].keyword(),
patchEntries[patchi].dict(),
patchi,
*this
)
);
}
is.check(FUNCTION_NAME);
close();
return true;
}
return false;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::polyBoundaryMesh::polyBoundaryMesh
(
const IOobject& io,
const polyMesh& mesh
)
:
polyPatchList(),
regIOobject(io),
mesh_(mesh)
{
readContents(false); // READ_IF_PRESENT allowed: False
}
Foam::polyBoundaryMesh::polyBoundaryMesh
(
const IOobject& io,
const polyMesh& pm,
const label size
)
:
polyPatchList(size),
regIOobject(io),
mesh_(pm)
{}
Foam::polyBoundaryMesh::polyBoundaryMesh
(
const IOobject& io,
const polyMesh& pm,
const polyPatchList& ppl
)
:
polyPatchList(),
regIOobject(io),
mesh_(pm)
{
if (!readContents(true)) // READ_IF_PRESENT allowed: True
{
polyPatchList& patches = *this;
patches.resize(ppl.size());
forAll(patches, patchi)
{
patches.set(patchi, ppl[patchi].clone(*this));
}
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
void Foam::polyBoundaryMesh::clearGeom()
{
polyPatchList& patches = *this;
for (polyPatch& p : patches)
{
p.clearGeom();
}
}
void Foam::polyBoundaryMesh::clearAddressing()
{
neighbourEdgesPtr_.clear();
patchIDPtr_.clear();
groupIDsPtr_.clear();
polyPatchList& patches = *this;
for (polyPatch& p : patches)
{
p.clearAddressing();
}
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::polyBoundaryMesh::calcGeometry()
{
PstreamBuffers pBufs(Pstream::defaultCommsType);
if
(
pBufs.commsType() == Pstream::commsTypes::blocking
|| pBufs.commsType() == Pstream::commsTypes::nonBlocking
)
{
forAll(*this, patchi)
{
operator[](patchi).initGeometry(pBufs);
}
pBufs.finishedSends();
forAll(*this, patchi)
{
operator[](patchi).calcGeometry(pBufs);
}
}
else if (pBufs.commsType() == Pstream::commsTypes::scheduled)
{
const lduSchedule& patchSchedule = mesh().globalData().patchSchedule();
// Dummy.
pBufs.finishedSends();
for (const auto& schedEval : patchSchedule)
{
const label patchi = schedEval.patch;
if (schedEval.init)
{
operator[](patchi).initGeometry(pBufs);
}
else
{
operator[](patchi).calcGeometry(pBufs);
}
}
}
}
Foam::UPtrList<const Foam::labelUList>
Foam::polyBoundaryMesh::faceCells() const
{
const polyPatchList& patches = *this;
UPtrList<const labelUList> list(patches.size());
forAll(patches, patchi)
{
list.set(patchi, &patches[patchi].faceCells());
}
return list;
}
const Foam::List<Foam::labelPairList>&
Foam::polyBoundaryMesh::neighbourEdges() const
{
if (Pstream::parRun())
{
WarningInFunction
<< "Neighbour edge addressing not correct across parallel"
<< " boundaries." << endl;
}
if (!neighbourEdgesPtr_)
{
neighbourEdgesPtr_.reset(new List<labelPairList>(size()));
auto& neighbourEdges = *neighbourEdgesPtr_;
// Initialize.
label nEdgePairs = 0;
forAll(*this, patchi)
{
const polyPatch& pp = operator[](patchi);
neighbourEdges[patchi].setSize(pp.nEdges() - pp.nInternalEdges());
for (labelPair& edgeInfo : neighbourEdges[patchi])
{
edgeInfo[0] = -1;
edgeInfo[1] = -1;
}
nEdgePairs += pp.nEdges() - pp.nInternalEdges();
}
// From mesh edge (expressed as a point pair so as not to construct
// point addressing) to patch + relative edge index.
EdgeMap<labelPair> pointsToEdge(nEdgePairs);
forAll(*this, patchi)
{
const polyPatch& pp = operator[](patchi);
const edgeList& edges = pp.edges();
for
(
label edgei = pp.nInternalEdges();
edgei < edges.size();
edgei++
)
{
// Edge in patch local points
const edge& e = edges[edgei];
// Edge in mesh points.
edge meshEdge(pp.meshPoints()[e[0]], pp.meshPoints()[e[1]]);
auto fnd = pointsToEdge.find(meshEdge);
if (!fnd.found())
{
// First occurrence of mesh edge. Store patch and my
// local index.
pointsToEdge.insert
(
meshEdge,
labelPair
(
patchi,
edgei - pp.nInternalEdges()
)
);
}
else
{
// Second occurrence. Store.
const labelPair& edgeInfo = fnd.val();
neighbourEdges[patchi][edgei - pp.nInternalEdges()] =
edgeInfo;
neighbourEdges[edgeInfo[0]][edgeInfo[1]]
= labelPair(patchi, edgei - pp.nInternalEdges());
// Found all two occurrences of this edge so remove from
// hash to save space. Note that this will give lots of
// problems if the polyBoundaryMesh is multiply connected.
pointsToEdge.erase(meshEdge);
}
}
}
if (pointsToEdge.size())
{
FatalErrorInFunction
<< "Not all boundary edges of patches match up." << nl
<< "Is the outside of your mesh multiply connected?"
<< abort(FatalError);
}
forAll(*this, patchi)
{
const polyPatch& pp = operator[](patchi);
const labelPairList& nbrEdges = neighbourEdges[patchi];
forAll(nbrEdges, i)
{
const labelPair& edgeInfo = nbrEdges[i];
if (edgeInfo[0] == -1 || edgeInfo[1] == -1)
{
const label edgei = pp.nInternalEdges() + i;
const edge& e = pp.edges()[edgei];
FatalErrorInFunction
<< "Not all boundary edges of patches match up." << nl
<< "Edge " << edgei << " on patch " << pp.name()
<< " end points " << pp.localPoints()[e[0]] << ' '
<< pp.localPoints()[e[1]] << " is not matched to an"
<< " edge on any other patch." << nl
<< "Is the outside of your mesh multiply connected?"
<< abort(FatalError);
}
}
}
}
return *neighbourEdgesPtr_;
}
const Foam::labelList& Foam::polyBoundaryMesh::patchID() const
{
if (!patchIDPtr_)
{
patchIDPtr_.reset(new labelList(mesh_.nBoundaryFaces()));
labelList& list = *patchIDPtr_;
const polyPatchList& patches = *this;
forAll(patches, patchi)
{
SubList<label>
(
list,
patches[patchi].size(),
(patches[patchi].start() - mesh_.nInternalFaces())
) = patchi;
}
}
return *patchIDPtr_;
}
const Foam::HashTable<Foam::labelList>&
Foam::polyBoundaryMesh::groupPatchIDs() const
{
if (!groupIDsPtr_)
{
calcGroupIDs();
}
return *groupIDsPtr_;
}
void Foam::polyBoundaryMesh::setGroup
(
const word& groupName,
const labelUList& patchIDs
)
{
groupIDsPtr_.clear();
polyPatchList& patches = *this;
boolList donePatch(patches.size(), false);
// Add to specified patches
for (const label patchi : patchIDs)
{
patches[patchi].inGroups().appendUniq(groupName);
donePatch[patchi] = true;
}
// Remove from other patches
forAll(patches, patchi)
{
if (!donePatch[patchi])
{
wordList& groups = patches[patchi].inGroups();
if (groups.found(groupName))
{
label newi = 0;
forAll(groups, i)
{
if (groups[i] != groupName)
{
groups[newi++] = groups[i];
}
}
groups.resize(newi);
}
}
}
}
Foam::label Foam::polyBoundaryMesh::nNonProcessor() const
{
const polyPatchList& patches = *this;
label nonProc = 0;
for (const polyPatch& p : patches)
{
if (isA<processorPolyPatch>(p))
{
break;
}
++nonProc;
}
return nonProc;
}
Foam::wordList Foam::polyBoundaryMesh::names() const
{
return PtrListOps::get<word>(*this, nameOp<polyPatch>());
}
Foam::wordList Foam::polyBoundaryMesh::types() const
{
return PtrListOps::get<word>(*this, typeOp<polyPatch>());
}
Foam::wordList Foam::polyBoundaryMesh::physicalTypes() const
{
return
PtrListOps::get<word>
(
*this,
[](const polyPatch& p) { return p.physicalType(); }
);
}
Foam::labelList Foam::polyBoundaryMesh::patchStarts() const
{
return
PtrListOps::get<label>
(
*this,
[](const polyPatch& p) { return p.start(); }
);
}
Foam::labelList Foam::polyBoundaryMesh::patchSizes() const
{
return
PtrListOps::get<label>
(
*this,
[](const polyPatch& p) { return p.size(); }
);
}
Foam::List<Foam::labelRange> Foam::polyBoundaryMesh::patchRanges() const
{
return
PtrListOps::get<labelRange>
(
*this,
[](const polyPatch& p) { return p.range(); }
);
}
Foam::wordList Foam::polyBoundaryMesh::groupNames() const
{
return this->groupPatchIDs().sortedToc();
}
Foam::label Foam::polyBoundaryMesh::start() const noexcept
{
return mesh_.nInternalFaces();
}
Foam::label Foam::polyBoundaryMesh::nFaces() const noexcept
{
return mesh_.nBoundaryFaces();
}
Foam::labelRange Foam::polyBoundaryMesh::range() const noexcept
{
return labelRange(mesh_.nInternalFaces(), mesh_.nBoundaryFaces());
}
Foam::labelRange Foam::polyBoundaryMesh::range(const label patchi) const
{
if (patchi < 0)
{
return labelRange(mesh_.nInternalFaces(), 0);
}
// Will fail if patchi >= size()
return (*this)[patchi].range();
}
Foam::labelList Foam::polyBoundaryMesh::indices
(
const wordRe& matcher,
const bool useGroups
) const
{
if (matcher.empty())
{
return labelList();
}
// Only check groups if requested and they exist
const bool checkGroups = (useGroups && this->hasGroupIDs());
labelHashSet ids;
if (matcher.isPattern())
{
if (checkGroups)
{
const auto& groupLookup = groupPatchIDs();
forAllConstIters(groupLookup, iter)
{
if (matcher.match(iter.key()))
{
// Hash ids associated with the group
ids.insert(iter.val());
}
}
}
if (ids.empty())
{
return PtrListOps::findMatching(*this, matcher);
}
else
{
ids.insert(PtrListOps::findMatching(*this, matcher));
}
}
else
{
// Literal string.
// Special version of above for reduced memory footprint.
const label patchId = PtrListOps::firstMatching(*this, matcher);
if (patchId >= 0)
{
return labelList(one{}, patchId);
}
else if (checkGroups)
{
const auto iter = groupPatchIDs().cfind(matcher);
if (iter.found())
{
// Hash ids associated with the group
ids.insert(iter.val());
}
}
}
return ids.sortedToc();
}
Foam::labelList Foam::polyBoundaryMesh::indices
(
const wordRes& matcher,
const bool useGroups
) const
{
if (matcher.empty())
{
return labelList();
}
else if (matcher.size() == 1)
{
return this->indices(matcher.first(), useGroups);
}
labelHashSet ids;
// Only check groups if requested and they exist
if (useGroups && this->hasGroupIDs())
{
ids.resize(2*this->size());
const auto& groupLookup = groupPatchIDs();
forAllConstIters(groupLookup, iter)
{
if (matcher.match(iter.key()))
{
// Hash ids associated with the group
ids.insert(iter.val());
}
}
}
if (ids.empty())
{
return PtrListOps::findMatching(*this, matcher);
}
else
{
ids.insert(PtrListOps::findMatching(*this, matcher));
}
return ids.sortedToc();
}
Foam::label Foam::polyBoundaryMesh::findIndex(const wordRe& key) const
{
if (key.empty())
{
return -1;
}
return PtrListOps::firstMatching(*this, key);
}
Foam::label Foam::polyBoundaryMesh::findPatchID
(
const word& patchName,
bool allowNotFound
) const
{
if (patchName.empty())
{
return -1;
}
const label patchId = PtrListOps::firstMatching(*this, patchName);
if (patchId >= 0)
{
return patchId;
}
if (!allowNotFound)
{
FatalErrorInFunction
<< "Patch '" << patchName << "' not found. "
<< "Available patch names";
if (polyMesh::defaultRegion != mesh_.name())
{
FatalError
<< " in region '" << mesh_.name() << "'";
}
FatalError
<< " include: " << names() << endl
<< exit(FatalError);
}
// Patch not found
if (debug)
{
Pout<< "label polyBoundaryMesh::findPatchID(const word&) const"
<< "Patch named " << patchName << " not found. "
<< "Available patch names: " << names() << endl;
}
// Not found, return -1
return -1;
}
Foam::labelPair
Foam::polyBoundaryMesh::whichPatchFace(const label faceIndex) const
{
if (faceIndex < mesh().nInternalFaces())
{
// Internal face: return (-1, meshFace)
return labelPair(-1, faceIndex);
}
else if (faceIndex >= mesh().nFaces())
{
// Bounds error: abort
FatalErrorInFunction
<< "Face " << faceIndex
<< " out of bounds. Number of geometric faces " << mesh().nFaces()
<< abort(FatalError);
return labelPair(-1, faceIndex);
}
// Patches are ordered, use binary search
// Find out which patch index and local patch face the specified
// mesh face belongs to by comparing label with patch start labels.
const polyPatchList& patches = *this;
const label patchi =
findLower
(
patches,
faceIndex,
0,
// Must include the start in the comparison
[](const polyPatch& p, label val) { return (p.start() <= val); }
);
if (patchi < 0 || !patches[patchi].range().found(faceIndex))
{
// If not in any of above, it is trouble!
FatalErrorInFunction
<< "Face " << faceIndex << " not found in any of the patches "
<< flatOutput(names()) << nl
<< "The patches appear to be inconsistent with the mesh :"
<< " internalFaces:" << mesh().nInternalFaces()
<< " total number of faces:" << mesh().nFaces()
<< abort(FatalError);
return labelPair(-1, faceIndex);
}
// (patch, local face index)
return labelPair(patchi, faceIndex - patches[patchi].start());
}
Foam::labelPairList
Foam::polyBoundaryMesh::whichPatchFace(const labelUList& faceIndices) const
{
labelPairList output(faceIndices.size());
forAll(faceIndices, i)
{
output[i] = whichPatchFace(faceIndices[i]);
}
return output;
}
Foam::labelHashSet Foam::polyBoundaryMesh::patchSet
(
const UList<wordRe>& patchNames,
const bool warnNotFound,
const bool useGroups
) const
{
const wordList allPatchNames(this->names());
labelHashSet ids(2*this->size());
// Only check groups if requested and they exist
const bool checkGroups = (useGroups && this->hasGroupIDs());
for (const wordRe& matcher : patchNames)
{
labelList matchIndices = findMatchingStrings(matcher, allPatchNames);
ids.insert(matchIndices);
bool missed = matchIndices.empty();
if (missed && checkGroups)
{
// Check group names
if (matcher.isPattern())
{
forAllConstIters(groupPatchIDs(), iter)
{
if (matcher.match(iter.key()))
{
// Hash ids associated with the group
ids.insert(iter.val());
missed = false;
}
}
}
else
{
const auto iter = groupPatchIDs().cfind(matcher);
if (iter.found())
{
// Hash ids associated with the group
ids.insert(iter.val());
missed = false;
}
}
}
if (missed && warnNotFound)
{
if (checkGroups)
{
WarningInFunction
<< "Cannot find any patch or group names matching "
<< matcher << endl;
}
else
{
WarningInFunction
<< "Cannot find any patch names matching "
<< matcher << endl;
}
}
}
return ids;
}
void Foam::polyBoundaryMesh::matchGroups
(
const labelUList& patchIDs,
wordList& groups,
labelHashSet& nonGroupPatches
) const
{
// Current matched groups
DynamicList<word> matchedGroups(1);
// Current set of unmatched patches
nonGroupPatches = labelHashSet(patchIDs);
const HashTable<labelList>& groupLookup = this->groupPatchIDs();
forAllConstIters(groupLookup, iter)
{
// Store currently unmatched patches so we can restore
labelHashSet oldNonGroupPatches(nonGroupPatches);
// Match by deleting patches in group from the current set and seeing
// if all have been deleted.
labelHashSet groupPatchSet(iter.val());
label nMatch = nonGroupPatches.erase(groupPatchSet);
if (nMatch == groupPatchSet.size())
{
matchedGroups.append(iter.key());
}
else if (nMatch != 0)
{
// No full match. Undo.
nonGroupPatches.transfer(oldNonGroupPatches);
}
}
groups.transfer(matchedGroups);
}
bool Foam::polyBoundaryMesh::checkParallelSync(const bool report) const
{
if (!Pstream::parRun())
{
return false;
}
const polyBoundaryMesh& bm = *this;
bool hasError = false;
// Collect non-proc patches and check proc patches are last.
wordList localNames(bm.size());
wordList localTypes(bm.size());
label nonProci = 0;
forAll(bm, patchi)
{
if (!isA<processorPolyPatch>(bm[patchi]))
{
if (nonProci != patchi)
{
// A processor patch in between normal patches!
hasError = true;
if (debug || report)
{
Pout<< " ***Problem with boundary patch " << patchi
<< " name:" << bm[patchi].name()
<< " type:" << bm[patchi].type()
<< " - seems to be preceeded by processor patches."
<< " This is usually a problem." << endl;
}
}
else
{
localNames[nonProci] = bm[patchi].name();
localTypes[nonProci] = bm[patchi].type();
++nonProci;
}
}
}
localNames.resize(nonProci);
localTypes.resize(nonProci);
// Check and report error(s) on master
const globalIndex procAddr
(
// Don't need to collect master itself
(Pstream::master() ? 0 : nonProci),
globalIndex::gatherOnly{}
);
const wordList allNames(procAddr.gather(localNames));
const wordList allTypes(procAddr.gather(localTypes));
// Automatically restricted to master
for (const int proci : procAddr.subProcs())
{
const auto procNames(allNames.slice(procAddr.range(proci)));
const auto procTypes(allTypes.slice(procAddr.range(proci)));
if (procNames != localNames || procTypes != localTypes)
{
hasError = true;
if (debug || report)
{
Info<< " ***Inconsistent patches across processors, "
"processor0 has patch names:" << localNames
<< " patch types:" << localTypes
<< " processor" << proci
<< " has patch names:" << procNames
<< " patch types:" << procTypes
<< endl;
}
}
}
// Reduce (not broadcast) to respect local out-of-order errors (first loop)
reduce(hasError, orOp<bool>());
return hasError;
}
bool Foam::polyBoundaryMesh::checkDefinition(const bool report) const
{
label nextPatchStart = mesh().nInternalFaces();
const polyBoundaryMesh& bm = *this;
bool hasError = false;
wordHashSet patchNames(2*this->size());
forAll(bm, patchi)
{
if (bm[patchi].start() != nextPatchStart && !hasError)
{
hasError = true;
Info<< " ****Problem with boundary patch " << patchi
<< " named " << bm[patchi].name()
<< " of type " << bm[patchi].type()
<< ". The patch should start on face no " << nextPatchStart
<< " and the patch specifies " << bm[patchi].start()
<< "." << endl
<< "Possibly consecutive patches have this same problem."
<< " Suppressing future warnings." << endl;
}
if (!patchNames.insert(bm[patchi].name()) && !hasError)
{
hasError = true;
Info<< " ****Duplicate boundary patch " << patchi
<< " named " << bm[patchi].name()
<< " of type " << bm[patchi].type()
<< "." << endl
<< "Suppressing future warnings." << endl;
}
nextPatchStart += bm[patchi].size();
}
reduce(hasError, orOp<bool>());
if (debug || report)
{
if (hasError)
{
Pout<< " ***Boundary definition is in error." << endl;
}
else
{
Info<< " Boundary definition OK." << endl;
}
}
return hasError;
}
void Foam::polyBoundaryMesh::movePoints(const pointField& p)
{
PstreamBuffers pBufs(Pstream::defaultCommsType);
if
(
pBufs.commsType() == Pstream::commsTypes::blocking
|| pBufs.commsType() == Pstream::commsTypes::nonBlocking
)
{
forAll(*this, patchi)
{
operator[](patchi).initMovePoints(pBufs, p);
}
pBufs.finishedSends();
forAll(*this, patchi)
{
operator[](patchi).movePoints(pBufs, p);
}
}
else if (pBufs.commsType() == Pstream::commsTypes::scheduled)
{
const lduSchedule& patchSchedule = mesh().globalData().patchSchedule();
// Dummy.
pBufs.finishedSends();
for (const auto& schedEval : patchSchedule)
{
const label patchi = schedEval.patch;
if (schedEval.init)
{
operator[](patchi).initMovePoints(pBufs, p);
}
else
{
operator[](patchi).movePoints(pBufs, p);
}
}
}
}
void Foam::polyBoundaryMesh::updateMesh()
{
neighbourEdgesPtr_.clear();
patchIDPtr_.clear();
groupIDsPtr_.clear();
PstreamBuffers pBufs(Pstream::defaultCommsType);
if
(
pBufs.commsType() == Pstream::commsTypes::blocking
|| pBufs.commsType() == Pstream::commsTypes::nonBlocking
)
{
forAll(*this, patchi)
{
operator[](patchi).initUpdateMesh(pBufs);
}
pBufs.finishedSends();
forAll(*this, patchi)
{
operator[](patchi).updateMesh(pBufs);
}
}
else if (pBufs.commsType() == Pstream::commsTypes::scheduled)
{
const lduSchedule& patchSchedule = mesh().globalData().patchSchedule();
// Dummy.
pBufs.finishedSends();
for (const auto& schedEval : patchSchedule)
{
const label patchi = schedEval.patch;
if (schedEval.init)
{
operator[](patchi).initUpdateMesh(pBufs);
}
else
{
operator[](patchi).updateMesh(pBufs);
}
}
}
}
void Foam::polyBoundaryMesh::reorder
(
const labelUList& oldToNew,
const bool validBoundary
)
{
// Change order of patches
polyPatchList::reorder(oldToNew);
// Adapt indices
polyPatchList& patches = *this;
forAll(patches, patchi)
{
patches[patchi].index() = patchi;
}
if (validBoundary)
{
updateMesh();
}
}
bool Foam::polyBoundaryMesh::writeData(Ostream& os) const
{
const polyPatchList& patches = *this;
os << patches.size() << nl << token::BEGIN_LIST << incrIndent << nl;
for (const polyPatch& pp : patches)
{
os.beginBlock(pp.name());
os << pp;
os.endBlock();
}
os << decrIndent << token::END_LIST;
os.check(FUNCTION_NAME);
return os.good();
}
bool Foam::polyBoundaryMesh::writeObject
(
IOstreamOption streamOpt,
const bool valid
) const
{
streamOpt.compression(IOstreamOption::UNCOMPRESSED);
return regIOobject::writeObject(streamOpt, valid);
}
// * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * * //
const Foam::polyPatch& Foam::polyBoundaryMesh::operator[]
(
const word& patchName
) const
{
const label patchi = findPatchID(patchName);
if (patchi < 0)
{
FatalErrorInFunction
<< "Patch named " << patchName << " not found." << nl
<< "Available patch names: " << names() << endl
<< abort(FatalError);
}
return operator[](patchi);
}
Foam::polyPatch& Foam::polyBoundaryMesh::operator[]
(
const word& patchName
)
{
const label patchi = findPatchID(patchName);
if (patchi < 0)
{
FatalErrorInFunction
<< "Patch named " << patchName << " not found." << nl
<< "Available patch names: " << names() << endl
<< abort(FatalError);
}
return operator[](patchi);
}
// * * * * * * * * * * * * * * * IOstream Operators * * * * * * * * * * * * //
Foam::Ostream& Foam::operator<<(Ostream& os, const polyBoundaryMesh& pbm)
{
pbm.writeData(os);
return os;
}
// ************************************************************************* //