openfoam/applications/utilities/mesh/generation/cv2DMesh/CV2D.C

1051 lines
27 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*----------------------------------------------------------------------------*/
#include "CV2D.H"
#include "Random.H"
#include "transform.H"
#include "IFstream.H"
#include "uint.H"
#include "ulong.H"
namespace Foam
{
defineTypeNameAndDebug(CV2D, 0);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::CV2D::insertBoundingBox()
{
Info<< "insertBoundingBox: creating bounding mesh" << endl;
scalar bigSpan = 10*meshControls().span();
insertPoint(point2D(-bigSpan, -bigSpan), Vb::FAR_POINT);
insertPoint(point2D(-bigSpan, bigSpan), Vb::FAR_POINT);
insertPoint(point2D(bigSpan, -bigSpan), Vb::FAR_POINT);
insertPoint(point2D(bigSpan, bigSpan), Vb::FAR_POINT);
}
void Foam::CV2D::fast_restore_Delaunay(Vertex_handle vh)
{
int i;
Face_handle f = vh->face(), next, start(f);
do
{
i=f->index(vh);
if (!is_infinite(f))
{
if (!internal_flip(f, cw(i))) external_flip(f, i);
if (f->neighbor(i) == start) start = f;
}
f = f->neighbor(cw(i));
} while (f != start);
}
void Foam::CV2D::external_flip(Face_handle& f, int i)
{
Face_handle n = f->neighbor(i);
if
(
CGAL::ON_POSITIVE_SIDE
!= side_of_oriented_circle(n, f->vertex(i)->point())
) return;
flip(f, i);
i = n->index(f->vertex(i));
external_flip(n, i);
}
bool Foam::CV2D::internal_flip(Face_handle& f, int i)
{
Face_handle n = f->neighbor(i);
if
(
CGAL::ON_POSITIVE_SIDE
!= side_of_oriented_circle(n, f->vertex(i)->point())
)
{
return false;
}
flip(f, i);
return true;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::CV2D::CV2D
(
const Time& runTime,
const dictionary& cvMeshDict
)
:
Delaunay(),
runTime_(runTime),
rndGen_(64293*Pstream::myProcNo()),
allGeometry_
(
IOobject
(
"cvSearchableSurfaces",
runTime_.constant(),
"triSurface",
runTime_,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
cvMeshDict.subDict("geometry")
),
qSurf_
(
runTime_,
rndGen_,
allGeometry_,
cvMeshDict.subDict("surfaceConformation")
),
controls_(cvMeshDict, qSurf_.globalBounds()),
cellSizeControl_
(
allGeometry_,
cvMeshDict.subDict("motionControl")
),
z_
(
point
(
cvMeshDict.subDict("surfaceConformation").lookup("locationInMesh")
).z()
),
startOfInternalPoints_(0),
startOfSurfacePointPairs_(0),
startOfBoundaryConformPointPairs_(0),
featurePoints_()
{
Info<< meshControls() << endl;
insertBoundingBox();
insertFeaturePoints();
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::CV2D::~CV2D()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::CV2D::insertPoints
(
const point2DField& points,
const scalar nearness
)
{
Info<< "insertInitialPoints(const point2DField& points): ";
startOfInternalPoints_ = number_of_vertices();
label nVert = startOfInternalPoints_;
// Add the points and index them
forAll(points, i)
{
const point2D& p = points[i];
if (qSurf_.wellInside(toPoint3D(p), nearness))
{
insert(toPoint(p))->index() = nVert++;
}
else
{
Warning
<< "Rejecting point " << p << " outside surface" << endl;
}
}
Info<< nVert << " vertices inserted" << endl;
if (meshControls().objOutput())
{
// Checking validity of triangulation
assert(is_valid());
writeTriangles("initial_triangles.obj", true);
writeFaces("initial_faces.obj", true);
}
}
void Foam::CV2D::insertPoints(const fileName& pointFileName)
{
IFstream pointsFile(pointFileName);
if (pointsFile.good())
{
insertPoints
(
point2DField(pointsFile),
0.5*meshControls().minCellSize2()
);
}
else
{
FatalErrorIn("insertInitialPoints")
<< "Could not open pointsFile " << pointFileName
<< exit(FatalError);
}
}
void Foam::CV2D::insertGrid()
{
Info<< "insertInitialGrid: ";
startOfInternalPoints_ = number_of_vertices();
label nVert = startOfInternalPoints_;
scalar x0 = qSurf_.globalBounds().min().x();
scalar xR = qSurf_.globalBounds().max().x() - x0;
int ni = int(xR/meshControls().minCellSize()) + 1;
scalar deltax = xR/ni;
scalar y0 = qSurf_.globalBounds().min().y();
scalar yR = qSurf_.globalBounds().max().y() - y0;
int nj = int(yR/meshControls().minCellSize()) + 1;
scalar deltay = yR/nj;
Random rndGen(1321);
scalar pert = meshControls().randomPerturbation()*min(deltax, deltay);
for (int i=0; i<ni; i++)
{
for (int j=0; j<nj; j++)
{
point p(x0 + i*deltax, y0 + j*deltay, 0);
if (meshControls().randomiseInitialGrid())
{
p.x() += pert*(rndGen.scalar01() - 0.5);
p.y() += pert*(rndGen.scalar01() - 0.5);
}
if (qSurf_.wellInside(p, 0.5*meshControls().minCellSize2()))
{
insert(Point(p.x(), p.y()))->index() = nVert++;
}
}
}
Info<< nVert << " vertices inserted" << endl;
if (meshControls().objOutput())
{
// Checking validity of triangulation
assert(is_valid());
writeTriangles("initial_triangles.obj", true);
writeFaces("initial_faces.obj", true);
}
}
void Foam::CV2D::insertSurfacePointPairs()
{
startOfSurfacePointPairs_ = number_of_vertices();
if (meshControls().insertSurfaceNearestPointPairs())
{
insertSurfaceNearestPointPairs();
}
write("nearest");
// Insertion of point-pairs for near-points may cause protrusions
// so insertBoundaryConformPointPairs must be executed last
if (meshControls().insertSurfaceNearPointPairs())
{
insertSurfaceNearPointPairs();
}
startOfBoundaryConformPointPairs_ = number_of_vertices();
}
void Foam::CV2D::boundaryConform()
{
if (!meshControls().insertSurfaceNearestPointPairs())
{
markNearBoundaryPoints();
}
// Mark all the faces as SAVE_CHANGED
for
(
Triangulation::Finite_faces_iterator fit = finite_faces_begin();
fit != finite_faces_end();
fit++
)
{
fit->faceIndex() = Fb::SAVE_CHANGED;
}
for (label iter=1; iter<=meshControls().maxBoundaryConformingIter(); iter++)
{
label nIntersections = insertBoundaryConformPointPairs
(
"surfaceIntersections_" + Foam::name(iter) + ".obj"
);
if (nIntersections == 0)
{
break;
}
else
{
Info<< "BC iteration " << iter << ": "
<< nIntersections << " point-pairs inserted" << endl;
}
// Any faces changed by insertBoundaryConformPointPairs will now
// be marked CHANGED, mark those as SAVE_CHANGED and those that
// remained SAVE_CHANGED as UNCHANGED
for
(
Triangulation::Finite_faces_iterator fit = finite_faces_begin();
fit != finite_faces_end();
fit++
)
{
if (fit->faceIndex() == Fb::SAVE_CHANGED)
{
fit->faceIndex() = Fb::UNCHANGED;
}
else if (fit->faceIndex() == Fb::CHANGED)
{
fit->faceIndex() = Fb::SAVE_CHANGED;
}
}
}
Info<< nl;
write("boundary");
}
void Foam::CV2D::removeSurfacePointPairs()
{
for
(
Triangulation::Finite_vertices_iterator vit = finite_vertices_begin();
vit != finite_vertices_end();
++vit
)
{
if (vit->index() >= startOfSurfacePointPairs_)
{
remove(vit);
}
}
}
void Foam::CV2D::newPoints(const scalar relaxation)
{
Info<< "newPointsFromVertices: ";
Field<point2D> dualVertices(number_of_faces());
label dualVerti = 0;
// Find the dual point of each tetrahedron and assign it an index.
for
(
Triangulation::Finite_faces_iterator fit = finite_faces_begin();
fit != finite_faces_end();
++fit
)
{
fit->faceIndex() = -1;
if
(
fit->vertex(0)->internalOrBoundaryPoint()
|| fit->vertex(1)->internalOrBoundaryPoint()
|| fit->vertex(2)->internalOrBoundaryPoint()
)
{
fit->faceIndex() = dualVerti;
dualVertices[dualVerti] = toPoint2D(circumcenter(fit));
dualVerti++;
}
}
dualVertices.setSize(dualVerti);
Field<vector2D> displacementAccumulator
(
startOfSurfacePointPairs_,
vector2D::zero
);
// Calculate target size and alignment for vertices
scalarField sizes
(
number_of_vertices(),
meshControls().minCellSize()
);
Field<vector2D> alignments
(
number_of_vertices(),
vector2D(1, 0)
);
for
(
Triangulation::Finite_vertices_iterator vit = finite_vertices_begin();
vit != finite_vertices_end();
++vit
)
{
if (vit->internalOrBoundaryPoint())
{
point2D vert = toPoint2D(vit->point());
// alignment and size determination
pointIndexHit pHit;
label hitSurface = -1;
qSurf_.findSurfaceNearest
(
toPoint3D(vert),
meshControls().span2(),
pHit,
hitSurface
);
if (pHit.hit())
{
vectorField norm(1);
allGeometry_[hitSurface].getNormal
(
List<pointIndexHit>(1, pHit),
norm
);
alignments[vit->index()] = toPoint2D(norm[0]);
sizes[vit->index()] =
cellSizeControl_.cellSize(toPoint3D(vit->point()));
}
}
}
// Info<< "Calculated alignments" << endl;
scalar cosAlignmentAcceptanceAngle = 0.68;
// Upper and lower edge length ratios for weight
scalar u = 1.0;
scalar l = 0.7;
PackedBoolList pointToBeRetained(startOfSurfacePointPairs_, true);
std::list<Point> pointsToInsert;
for
(
Triangulation::Finite_edges_iterator eit = finite_edges_begin();
eit != finite_edges_end();
eit++
)
{
Vertex_handle vA = eit->first->vertex(cw(eit->second));
Vertex_handle vB = eit->first->vertex(ccw(eit->second));
if (!vA->internalOrBoundaryPoint() || !vB->internalOrBoundaryPoint())
{
continue;
}
const point2D& dualV1 = dualVertices[eit->first->faceIndex()];
const point2D& dualV2 =
dualVertices[eit->first->neighbor(eit->second)->faceIndex()];
scalar dualEdgeLength = mag(dualV1 - dualV2);
point2D dVA = toPoint2D(vA->point());
point2D dVB = toPoint2D(vB->point());
Field<vector2D> alignmentDirsA(2);
alignmentDirsA[0] = alignments[vA->index()];
alignmentDirsA[1] = vector2D
(
-alignmentDirsA[0].y(),
alignmentDirsA[0].x()
);
Field<vector2D> alignmentDirsB(2);
alignmentDirsB[0] = alignments[vB->index()];
alignmentDirsB[1] = vector2D
(
-alignmentDirsB[0].y(),
alignmentDirsB[0].x()
);
Field<vector2D> alignmentDirs(2);
forAll(alignmentDirsA, aA)
{
const vector2D& a(alignmentDirsA[aA]);
scalar maxDotProduct = 0.0;
forAll(alignmentDirsB, aB)
{
const vector2D& b(alignmentDirsB[aB]);
scalar dotProduct = a & b;
if (mag(dotProduct) > maxDotProduct)
{
maxDotProduct = mag(dotProduct);
alignmentDirs[aA] = a + sign(dotProduct)*b;
alignmentDirs[aA] /= mag(alignmentDirs[aA]);
}
}
}
vector2D rAB = dVA - dVB;
scalar rABMag = mag(rAB);
forAll(alignmentDirs, aD)
{
vector2D& alignmentDir = alignmentDirs[aD];
if ((rAB & alignmentDir) < 0)
{
// swap the direction of the alignment so that has the
// same sense as rAB
alignmentDir *= -1;
}
scalar alignmentDotProd = ((rAB/rABMag) & alignmentDir);
if (alignmentDotProd > cosAlignmentAcceptanceAngle)
{
scalar targetFaceSize =
0.5*(sizes[vA->index()] + sizes[vB->index()]);
// Test for changing aspect ratio on second alignment (first
// alignment is neartest surface normal)
// if (aD == 1)
// {
// targetFaceSize *= 2.0;
// }
alignmentDir *= 0.5*targetFaceSize;
vector2D delta = alignmentDir - 0.5*rAB;
if (dualEdgeLength < 0.7*targetFaceSize)
{
delta *= 0;
}
else if (dualEdgeLength < targetFaceSize)
{
delta *=
(
dualEdgeLength
/(targetFaceSize*(u - l))
- 1/((u/l) - 1)
);
}
if
(
vA->internalPoint()
&& vB->internalPoint()
&& rABMag > 1.75*targetFaceSize
&& dualEdgeLength > 0.05*targetFaceSize
&& alignmentDotProd > 0.93
)
{
// Point insertion
pointsToInsert.push_back(toPoint(0.5*(dVA + dVB)));
}
else if
(
(vA->internalPoint() || vB->internalPoint())
&& rABMag < 0.65*targetFaceSize
)
{
// Point removal
// Only insert a point at the midpoint of the short edge
// if neither attached point has already been identified
// to be removed.
if
(
pointToBeRetained[vA->index()] == true
&& pointToBeRetained[vB->index()] == true
)
{
pointsToInsert.push_back(toPoint(0.5*(dVA + dVB)));
}
if (vA->internalPoint())
{
pointToBeRetained[vA->index()] = false;
}
if (vB->internalPoint())
{
pointToBeRetained[vB->index()] = false;
}
}
else
{
if (vA->internalPoint())
{
displacementAccumulator[vA->index()] += delta;
}
if (vB->internalPoint())
{
displacementAccumulator[vB->index()] += -delta;
}
}
}
}
}
vector2D totalDisp = sum(displacementAccumulator);
scalar totalDist = sum(mag(displacementAccumulator));
// Relax the calculated displacement
displacementAccumulator *= relaxation;
label numberOfNewPoints = pointsToInsert.size();
for
(
Triangulation::Finite_vertices_iterator vit = finite_vertices_begin();
vit != finite_vertices_end();
++vit
)
{
if (vit->internalPoint())
{
if (pointToBeRetained[vit->index()])
{
pointsToInsert.push_front
(
toPoint
(
toPoint2D(vit->point())
+ displacementAccumulator[vit->index()]
)
);
}
}
}
// Clear the triangulation and reinsert the bounding box and feature points.
// This is faster than removing and moving points.
this->clear();
insertBoundingBox();
reinsertFeaturePoints();
startOfInternalPoints_ = number_of_vertices();
label nVert = startOfInternalPoints_;
Info<< "Inserting " << numberOfNewPoints << " new points" << endl;
// Use the range insert as it is faster than individually inserting points.
insert(pointsToInsert.begin(), pointsToInsert.end());
for
(
Delaunay::Finite_vertices_iterator vit = finite_vertices_begin();
vit != finite_vertices_end();
++vit
)
{
if
(
vit->type() == Vb::INTERNAL_POINT
&& vit->index() == Vb::INTERNAL_POINT
)
{
vit->index() = nVert++;
}
}
Info<< " Total displacement = " << totalDisp << nl
<< " Total distance = " << totalDist << nl
<< " Points added = " << pointsToInsert.size()
<< endl;
write("internal");
insertSurfacePointPairs();
boundaryConform();
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Old Method
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// for
// (
// Triangulation::Finite_vertices_iterator vit = finite_vertices_begin();
// vit != finite_vertices_end();
// ++vit
// )
// {
// if (vit->internalPoint())
// {
// // Current dual-cell defining vertex ("centre")
// point2DFromPoint defVert0 = toPoint2D(vit->point());
// Triangulation::Edge_circulator ec = incident_edges(vit);
// Triangulation::Edge_circulator ecStart = ec;
// // Circulate around the edges to find the first which is not
// // infinite
// do
// {
// if (!is_infinite(ec)) break;
// } while (++ec != ecStart);
// // Store the start-end of the first non-infinte edge
// point2D de0 = toPoint2D(circumcenter(ec->first));
// // Keep track of the maximum edge length^2
// scalar maxEdgeLen2 = 0.0;
// // Keep track of the index of the longest edge
// label edgecd0i = -1;
// // Edge counter
// label edgei = 0;
// do
// {
// if (!is_infinite(ec))
// {
// // Get the end of the current edge
// point2D de1 = toPoint2D
// (
// circumcenter(ec->first->neighbor(ec->second))
// );
// // Store the current edge vector
// edges[edgei] = de1 - de0;
// // Store the edge mid-point in the vertices array
// vertices[edgei] = 0.5*(de1 + de0);
// // Move the current edge end into the edge start for the
// // next iteration
// de0 = de1;
// // Keep track of the longest edge
// scalar edgeLen2 = magSqr(edges[edgei]);
// if (edgeLen2 > maxEdgeLen2)
// {
// maxEdgeLen2 = edgeLen2;
// edgecd0i = edgei;
// }
// edgei++;
// }
// } while (++ec != ecStart);
// // Initialise cd0 such that the mesh will align
// // in in the x-y directions
// vector2D cd0(1, 0);
// if (meshControls().relaxOrientation())
// {
// // Get the longest edge from the array and use as the primary
// // direction of the coordinate system of the "square" cell
// cd0 = edges[edgecd0i];
// }
// if (meshControls().nearWallAlignedDist() > 0)
// {
// pointIndexHit pHit = qSurf_.tree().findNearest
// (
// toPoint3D(defVert0),
// meshControls().nearWallAlignedDist2()
// );
// if (pHit.hit())
// {
// cd0 = toPoint2D(faceNormals[pHit.index()]);
// }
// }
// // Rotate by 45deg needed to create an averaging procedure which
// // encourages the cells to be square
// cd0 = vector2D(cd0.x() + cd0.y(), cd0.y() - cd0.x());
// // Normalise the primary coordinate direction
// cd0 /= mag(cd0);
// // Calculate the orthogonal coordinate direction
// vector2D cd1(-cd0.y(), cd0.x());
// // Restart the circulator
// ec = ecStart;
// // ... and the counter
// edgei = 0;
// // Initialise the displacement for the centre and sum-weights
// vector2D disp = vector2D::zero;
// scalar sumw = 0;
// do
// {
// if (!is_infinite(ec))
// {
// // Pick up the current edge
// const vector2D& ei = edges[edgei];
// // Calculate the centre to edge-centre vector
// vector2D deltai = vertices[edgei] - defVert0;
// // Set the weight for this edge contribution
// scalar w = 1;
// if (meshControls().squares())
// {
// w = magSqr(deltai.x()*ei.y() - deltai.y()*ei.x());
// // alternative weights
// //w = mag(deltai.x()*ei.y() - deltai.y()*ei.x());
// //w = magSqr(ei)*mag(deltai);
// // Use the following for an ~square mesh
// // Find the coordinate contributions for this edge delta
// scalar cd0deltai = cd0 & deltai;
// scalar cd1deltai = cd1 & deltai;
// // Create a "square" displacement
// if (mag(cd0deltai) > mag(cd1deltai))
// {
// disp += (w*cd0deltai)*cd0;
// }
// else
// {
// disp += (w*cd1deltai)*cd1;
// }
// }
// else
// {
// // Use this for a hexagon/pentagon mesh
// disp += w*deltai;
// }
// // Sum the weights
// sumw += w;
// }
// else
// {
// FatalErrorIn("CV2D::newPoints() const")
// << "Infinite triangle found in internal mesh"
// << exit(FatalError);
// }
// edgei++;
// } while (++ec != ecStart);
// // Calculate the average displacement
// disp /= sumw;
// totalDisp += disp;
// totalDist += mag(disp);
// // Move the point by a fraction of the average displacement
// movePoint(vit, defVert0 + relaxation*disp);
// }
// }
// Info << "\nTotal displacement = " << totalDisp
// << " total distance = " << totalDist << endl;
}
//void Foam::CV2D::moveInternalPoints(const point2DField& newPoints)
//{
// label pointI = 0;
// for
// (
// Triangulation::Finite_vertices_iterator vit = finite_vertices_begin();
// vit != finite_vertices_end();
// ++vit
// )
// {
// if (vit->internalPoint())
// {
// movePoint(vit, newPoints[pointI++]);
// }
// }
//}
void Foam::CV2D::extractPatches
(
wordList& patchNames,
labelList& patchSizes,
EdgeMap<label>& mapEdgesRegion
) const
{
label nPatches = qSurf_.patchNames().size() + 1;
label defaultPatchIndex = qSurf_.patchNames().size();
patchNames.setSize(nPatches);
patchSizes.setSize(nPatches, 0);
mapEdgesRegion.clear();
const wordList& existingPatches = qSurf_.patchNames();
forAll(existingPatches, sP)
{
patchNames[sP] = existingPatches[sP];
}
patchNames[defaultPatchIndex] = "CV2D_default_patch";
for
(
Triangulation::Finite_edges_iterator eit = finite_edges_begin();
eit != finite_edges_end();
++eit
)
{
Face_handle fOwner = eit->first;
Face_handle fNeighbor = fOwner->neighbor(eit->second);
Vertex_handle vA = fOwner->vertex(cw(eit->second));
Vertex_handle vB = fOwner->vertex(ccw(eit->second));
if
(
(vA->internalOrBoundaryPoint() && !vB->internalOrBoundaryPoint())
|| (vB->internalOrBoundaryPoint() && !vA->internalOrBoundaryPoint())
)
{
point ptA = toPoint3D(vA->point());
point ptB = toPoint3D(vB->point());
label patchIndex = qSurf_.findPatch(ptA, ptB);
if (patchIndex == -1)
{
patchIndex = defaultPatchIndex;
WarningIn("Foam::CV2D::extractPatches")
<< "Dual face found that is not on a surface "
<< "patch. Adding to CV2D_default_patch."
<< endl;
}
edge e(fOwner->faceIndex(), fNeighbor->faceIndex());
patchSizes[patchIndex]++;
mapEdgesRegion.insert(e, patchIndex);
}
}
}
void Foam::CV2D::write() const
{
if (meshControls().objOutput())
{
writeFaces("allFaces.obj", false);
writeFaces("faces.obj", true);
writeTriangles("allTriangles.obj", false);
writeTriangles("triangles.obj", true);
writePatch("patch.pch");
}
}
void Foam::CV2D::write(const word& stage) const
{
if (meshControls().objOutput())
{
Foam::mkDir(stage + "Faces");
Foam::mkDir(stage + "Triangles");
writeFaces
(
stage
+ "Faces/allFaces_"
+ runTime_.timeName()
+ ".obj",
false
);
writeTriangles
(
stage
+ "Triangles/allTriangles_"
+ runTime_.timeName()
+ ".obj",
false
);
}
}
// ************************************************************************* //