- when constructing dimensioned fields that are to be zero-initialized, it is preferrable to use a form such as dimensionedScalar(dims, Zero) dimensionedVector(dims, Zero) rather than dimensionedScalar("0", dims, 0) dimensionedVector("zero", dims, vector::zero) This reduces clutter and also avoids any suggestion that the name of the dimensioned quantity has any influence on the field's name. An even shorter version is possible. Eg, dimensionedScalar(dims) but reduces the clarity of meaning. - NB: UniformDimensionedField is an exception to these style changes since it does use the name of the dimensioned type (instead of the regIOobject).
716 lines
17 KiB
C
716 lines
17 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "multiphaseMixture.H"
|
|
#include "alphaContactAngleFvPatchScalarField.H"
|
|
#include "Time.H"
|
|
#include "subCycle.H"
|
|
#include "MULES.H"
|
|
#include "surfaceInterpolate.H"
|
|
#include "fvcGrad.H"
|
|
#include "fvcSnGrad.H"
|
|
#include "fvcDiv.H"
|
|
#include "fvcFlux.H"
|
|
#include "unitConversion.H"
|
|
|
|
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
|
|
|
|
void Foam::multiphaseMixture::calcAlphas()
|
|
{
|
|
scalar level = 0.0;
|
|
alphas_ == 0.0;
|
|
|
|
forAllIter(PtrDictionary<phase>, phases_, iter)
|
|
{
|
|
alphas_ += level*iter();
|
|
level += 1.0;
|
|
}
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
|
|
|
Foam::multiphaseMixture::multiphaseMixture
|
|
(
|
|
const volVectorField& U,
|
|
const surfaceScalarField& phi
|
|
)
|
|
:
|
|
IOdictionary
|
|
(
|
|
IOobject
|
|
(
|
|
"transportProperties",
|
|
U.time().constant(),
|
|
U.db(),
|
|
IOobject::MUST_READ_IF_MODIFIED,
|
|
IOobject::NO_WRITE
|
|
)
|
|
),
|
|
|
|
phases_(lookup("phases"), phase::iNew(U, phi)),
|
|
|
|
mesh_(U.mesh()),
|
|
U_(U),
|
|
phi_(phi),
|
|
|
|
rhoPhi_
|
|
(
|
|
IOobject
|
|
(
|
|
"rhoPhi",
|
|
mesh_.time().timeName(),
|
|
mesh_,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(dimMass/dimTime, Zero)
|
|
),
|
|
|
|
alphas_
|
|
(
|
|
IOobject
|
|
(
|
|
"alphas",
|
|
mesh_.time().timeName(),
|
|
mesh_,
|
|
IOobject::NO_READ,
|
|
IOobject::AUTO_WRITE
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(dimless, Zero)
|
|
),
|
|
|
|
nu_
|
|
(
|
|
IOobject
|
|
(
|
|
"nu",
|
|
mesh_.time().timeName(),
|
|
mesh_
|
|
),
|
|
mu()/rho()
|
|
),
|
|
|
|
sigmas_(lookup("sigmas")),
|
|
dimSigma_(1, 0, -2, 0, 0),
|
|
deltaN_
|
|
(
|
|
"deltaN",
|
|
1e-8/pow(average(mesh_.V()), 1.0/3.0)
|
|
)
|
|
{
|
|
rhoPhi_.setOriented();
|
|
|
|
calcAlphas();
|
|
alphas_.write();
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
|
|
|
|
Foam::tmp<Foam::volScalarField>
|
|
Foam::multiphaseMixture::rho() const
|
|
{
|
|
PtrDictionary<phase>::const_iterator iter = phases_.begin();
|
|
|
|
tmp<volScalarField> trho = iter()*iter().rho();
|
|
volScalarField& rho = trho.ref();
|
|
|
|
for (++iter; iter != phases_.end(); ++iter)
|
|
{
|
|
rho += iter()*iter().rho();
|
|
}
|
|
|
|
return trho;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField>
|
|
Foam::multiphaseMixture::rho(const label patchi) const
|
|
{
|
|
PtrDictionary<phase>::const_iterator iter = phases_.begin();
|
|
|
|
tmp<scalarField> trho = iter().boundaryField()[patchi]*iter().rho().value();
|
|
scalarField& rho = trho.ref();
|
|
|
|
for (++iter; iter != phases_.end(); ++iter)
|
|
{
|
|
rho += iter().boundaryField()[patchi]*iter().rho().value();
|
|
}
|
|
|
|
return trho;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField>
|
|
Foam::multiphaseMixture::mu() const
|
|
{
|
|
PtrDictionary<phase>::const_iterator iter = phases_.begin();
|
|
|
|
tmp<volScalarField> tmu = iter()*iter().rho()*iter().nu();
|
|
volScalarField& mu = tmu.ref();
|
|
|
|
for (++iter; iter != phases_.end(); ++iter)
|
|
{
|
|
mu += iter()*iter().rho()*iter().nu();
|
|
}
|
|
|
|
return tmu;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField>
|
|
Foam::multiphaseMixture::mu(const label patchi) const
|
|
{
|
|
PtrDictionary<phase>::const_iterator iter = phases_.begin();
|
|
|
|
tmp<scalarField> tmu =
|
|
iter().boundaryField()[patchi]
|
|
*iter().rho().value()
|
|
*iter().nu(patchi);
|
|
scalarField& mu = tmu.ref();
|
|
|
|
for (++iter; iter != phases_.end(); ++iter)
|
|
{
|
|
mu +=
|
|
iter().boundaryField()[patchi]
|
|
*iter().rho().value()
|
|
*iter().nu(patchi);
|
|
}
|
|
|
|
return tmu;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceScalarField>
|
|
Foam::multiphaseMixture::muf() const
|
|
{
|
|
PtrDictionary<phase>::const_iterator iter = phases_.begin();
|
|
|
|
tmp<surfaceScalarField> tmuf =
|
|
fvc::interpolate(iter())*iter().rho()*fvc::interpolate(iter().nu());
|
|
surfaceScalarField& muf = tmuf.ref();
|
|
|
|
for (++iter; iter != phases_.end(); ++iter)
|
|
{
|
|
muf +=
|
|
fvc::interpolate(iter())*iter().rho()*fvc::interpolate(iter().nu());
|
|
}
|
|
|
|
return tmuf;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField>
|
|
Foam::multiphaseMixture::nu() const
|
|
{
|
|
return nu_;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField>
|
|
Foam::multiphaseMixture::nu(const label patchi) const
|
|
{
|
|
return nu_.boundaryField()[patchi];
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceScalarField>
|
|
Foam::multiphaseMixture::nuf() const
|
|
{
|
|
return muf()/fvc::interpolate(rho());
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceScalarField>
|
|
Foam::multiphaseMixture::surfaceTensionForce() const
|
|
{
|
|
tmp<surfaceScalarField> tstf
|
|
(
|
|
new surfaceScalarField
|
|
(
|
|
IOobject
|
|
(
|
|
"surfaceTensionForce",
|
|
mesh_.time().timeName(),
|
|
mesh_
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(dimensionSet(1, -2, -2, 0, 0), Zero)
|
|
)
|
|
);
|
|
|
|
surfaceScalarField& stf = tstf.ref();
|
|
stf.setOriented();
|
|
|
|
forAllConstIter(PtrDictionary<phase>, phases_, iter1)
|
|
{
|
|
const phase& alpha1 = iter1();
|
|
|
|
PtrDictionary<phase>::const_iterator iter2 = iter1;
|
|
++iter2;
|
|
|
|
for (; iter2 != phases_.end(); ++iter2)
|
|
{
|
|
const phase& alpha2 = iter2();
|
|
|
|
sigmaTable::const_iterator sigma =
|
|
sigmas_.find(interfacePair(alpha1, alpha2));
|
|
|
|
if (sigma == sigmas_.end())
|
|
{
|
|
FatalErrorInFunction
|
|
<< "Cannot find interface " << interfacePair(alpha1, alpha2)
|
|
<< " in list of sigma values"
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
stf += dimensionedScalar("sigma", dimSigma_, sigma())
|
|
*fvc::interpolate(K(alpha1, alpha2))*
|
|
(
|
|
fvc::interpolate(alpha2)*fvc::snGrad(alpha1)
|
|
- fvc::interpolate(alpha1)*fvc::snGrad(alpha2)
|
|
);
|
|
}
|
|
}
|
|
|
|
return tstf;
|
|
}
|
|
|
|
|
|
void Foam::multiphaseMixture::solve()
|
|
{
|
|
correct();
|
|
|
|
const Time& runTime = mesh_.time();
|
|
|
|
volScalarField& alpha = phases_.first();
|
|
|
|
const dictionary& alphaControls = mesh_.solverDict("alpha");
|
|
label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));
|
|
scalar cAlpha(readScalar(alphaControls.lookup("cAlpha")));
|
|
|
|
if (nAlphaSubCycles > 1)
|
|
{
|
|
surfaceScalarField rhoPhiSum
|
|
(
|
|
IOobject
|
|
(
|
|
"rhoPhiSum",
|
|
runTime.timeName(),
|
|
mesh_
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(rhoPhi_.dimensions(), Zero)
|
|
);
|
|
|
|
dimensionedScalar totalDeltaT = runTime.deltaT();
|
|
|
|
for
|
|
(
|
|
subCycle<volScalarField> alphaSubCycle(alpha, nAlphaSubCycles);
|
|
!(++alphaSubCycle).end();
|
|
)
|
|
{
|
|
solveAlphas(cAlpha);
|
|
rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi_;
|
|
}
|
|
|
|
rhoPhi_ = rhoPhiSum;
|
|
}
|
|
else
|
|
{
|
|
solveAlphas(cAlpha);
|
|
}
|
|
|
|
// Update the mixture kinematic viscosity
|
|
nu_ = mu()/rho();
|
|
}
|
|
|
|
|
|
void Foam::multiphaseMixture::correct()
|
|
{
|
|
forAllIter(PtrDictionary<phase>, phases_, iter)
|
|
{
|
|
iter().correct();
|
|
}
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceVectorField> Foam::multiphaseMixture::nHatfv
|
|
(
|
|
const volScalarField& alpha1,
|
|
const volScalarField& alpha2
|
|
) const
|
|
{
|
|
/*
|
|
// Cell gradient of alpha
|
|
volVectorField gradAlpha =
|
|
alpha2*fvc::grad(alpha1) - alpha1*fvc::grad(alpha2);
|
|
|
|
// Interpolated face-gradient of alpha
|
|
surfaceVectorField gradAlphaf = fvc::interpolate(gradAlpha);
|
|
*/
|
|
|
|
surfaceVectorField gradAlphaf
|
|
(
|
|
fvc::interpolate(alpha2)*fvc::interpolate(fvc::grad(alpha1))
|
|
- fvc::interpolate(alpha1)*fvc::interpolate(fvc::grad(alpha2))
|
|
);
|
|
|
|
// Face unit interface normal
|
|
return gradAlphaf/(mag(gradAlphaf) + deltaN_);
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceScalarField> Foam::multiphaseMixture::nHatf
|
|
(
|
|
const volScalarField& alpha1,
|
|
const volScalarField& alpha2
|
|
) const
|
|
{
|
|
// Face unit interface normal flux
|
|
return nHatfv(alpha1, alpha2) & mesh_.Sf();
|
|
}
|
|
|
|
|
|
// Correction for the boundary condition on the unit normal nHat on
|
|
// walls to produce the correct contact angle.
|
|
|
|
// The dynamic contact angle is calculated from the component of the
|
|
// velocity on the direction of the interface, parallel to the wall.
|
|
|
|
void Foam::multiphaseMixture::correctContactAngle
|
|
(
|
|
const phase& alpha1,
|
|
const phase& alpha2,
|
|
surfaceVectorField::Boundary& nHatb
|
|
) const
|
|
{
|
|
const volScalarField::Boundary& gbf
|
|
= alpha1.boundaryField();
|
|
|
|
const fvBoundaryMesh& boundary = mesh_.boundary();
|
|
|
|
forAll(boundary, patchi)
|
|
{
|
|
if (isA<alphaContactAngleFvPatchScalarField>(gbf[patchi]))
|
|
{
|
|
const alphaContactAngleFvPatchScalarField& acap =
|
|
refCast<const alphaContactAngleFvPatchScalarField>(gbf[patchi]);
|
|
|
|
vectorField& nHatPatch = nHatb[patchi];
|
|
|
|
vectorField AfHatPatch
|
|
(
|
|
mesh_.Sf().boundaryField()[patchi]
|
|
/mesh_.magSf().boundaryField()[patchi]
|
|
);
|
|
|
|
alphaContactAngleFvPatchScalarField::thetaPropsTable::
|
|
const_iterator tp =
|
|
acap.thetaProps().find(interfacePair(alpha1, alpha2));
|
|
|
|
if (tp == acap.thetaProps().end())
|
|
{
|
|
FatalErrorInFunction
|
|
<< "Cannot find interface " << interfacePair(alpha1, alpha2)
|
|
<< "\n in table of theta properties for patch "
|
|
<< acap.patch().name()
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
bool matched = (tp.key().first() == alpha1.name());
|
|
|
|
const scalar theta0 = degToRad(tp().theta0(matched));
|
|
scalarField theta(boundary[patchi].size(), theta0);
|
|
|
|
scalar uTheta = tp().uTheta();
|
|
|
|
// Calculate the dynamic contact angle if required
|
|
if (uTheta > SMALL)
|
|
{
|
|
const scalar thetaA = degToRad(tp().thetaA(matched));
|
|
const scalar thetaR = degToRad(tp().thetaR(matched));
|
|
|
|
// Calculated the component of the velocity parallel to the wall
|
|
vectorField Uwall
|
|
(
|
|
U_.boundaryField()[patchi].patchInternalField()
|
|
- U_.boundaryField()[patchi]
|
|
);
|
|
Uwall -= (AfHatPatch & Uwall)*AfHatPatch;
|
|
|
|
// Find the direction of the interface parallel to the wall
|
|
vectorField nWall
|
|
(
|
|
nHatPatch - (AfHatPatch & nHatPatch)*AfHatPatch
|
|
);
|
|
|
|
// Normalise nWall
|
|
nWall /= (mag(nWall) + SMALL);
|
|
|
|
// Calculate Uwall resolved normal to the interface parallel to
|
|
// the interface
|
|
scalarField uwall(nWall & Uwall);
|
|
|
|
theta += (thetaA - thetaR)*tanh(uwall/uTheta);
|
|
}
|
|
|
|
|
|
// Reset nHatPatch to correspond to the contact angle
|
|
|
|
scalarField a12(nHatPatch & AfHatPatch);
|
|
|
|
scalarField b1(cos(theta));
|
|
|
|
scalarField b2(nHatPatch.size());
|
|
|
|
forAll(b2, facei)
|
|
{
|
|
b2[facei] = cos(acos(a12[facei]) - theta[facei]);
|
|
}
|
|
|
|
scalarField det(1.0 - a12*a12);
|
|
|
|
scalarField a((b1 - a12*b2)/det);
|
|
scalarField b((b2 - a12*b1)/det);
|
|
|
|
nHatPatch = a*AfHatPatch + b*nHatPatch;
|
|
|
|
nHatPatch /= (mag(nHatPatch) + deltaN_.value());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixture::K
|
|
(
|
|
const phase& alpha1,
|
|
const phase& alpha2
|
|
) const
|
|
{
|
|
tmp<surfaceVectorField> tnHatfv = nHatfv(alpha1, alpha2);
|
|
|
|
correctContactAngle(alpha1, alpha2, tnHatfv.ref().boundaryFieldRef());
|
|
|
|
// Simple expression for curvature
|
|
return -fvc::div(tnHatfv & mesh_.Sf());
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField>
|
|
Foam::multiphaseMixture::nearInterface() const
|
|
{
|
|
tmp<volScalarField> tnearInt
|
|
(
|
|
new volScalarField
|
|
(
|
|
IOobject
|
|
(
|
|
"nearInterface",
|
|
mesh_.time().timeName(),
|
|
mesh_
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(dimless, Zero)
|
|
)
|
|
);
|
|
|
|
forAllConstIter(PtrDictionary<phase>, phases_, iter)
|
|
{
|
|
tnearInt.ref() =
|
|
max(tnearInt(), pos0(iter() - 0.01)*pos0(0.99 - iter()));
|
|
}
|
|
|
|
return tnearInt;
|
|
}
|
|
|
|
|
|
void Foam::multiphaseMixture::solveAlphas
|
|
(
|
|
const scalar cAlpha
|
|
)
|
|
{
|
|
static label nSolves=-1;
|
|
nSolves++;
|
|
|
|
word alphaScheme("div(phi,alpha)");
|
|
word alpharScheme("div(phirb,alpha)");
|
|
|
|
surfaceScalarField phic(mag(phi_/mesh_.magSf()));
|
|
phic = min(cAlpha*phic, max(phic));
|
|
|
|
PtrList<surfaceScalarField> alphaPhiCorrs(phases_.size());
|
|
int phasei = 0;
|
|
|
|
forAllIter(PtrDictionary<phase>, phases_, iter)
|
|
{
|
|
phase& alpha = iter();
|
|
|
|
alphaPhiCorrs.set
|
|
(
|
|
phasei,
|
|
new surfaceScalarField
|
|
(
|
|
"phi" + alpha.name() + "Corr",
|
|
fvc::flux
|
|
(
|
|
phi_,
|
|
alpha,
|
|
alphaScheme
|
|
)
|
|
)
|
|
);
|
|
|
|
surfaceScalarField& alphaPhiCorr = alphaPhiCorrs[phasei];
|
|
|
|
forAllIter(PtrDictionary<phase>, phases_, iter2)
|
|
{
|
|
phase& alpha2 = iter2();
|
|
|
|
if (&alpha2 == &alpha) continue;
|
|
|
|
surfaceScalarField phir(phic*nHatf(alpha, alpha2));
|
|
|
|
alphaPhiCorr += fvc::flux
|
|
(
|
|
-fvc::flux(-phir, alpha2, alpharScheme),
|
|
alpha,
|
|
alpharScheme
|
|
);
|
|
}
|
|
|
|
MULES::limit
|
|
(
|
|
1.0/mesh_.time().deltaT().value(),
|
|
geometricOneField(),
|
|
alpha,
|
|
phi_,
|
|
alphaPhiCorr,
|
|
zeroField(),
|
|
zeroField(),
|
|
1,
|
|
0,
|
|
true
|
|
);
|
|
|
|
phasei++;
|
|
}
|
|
|
|
MULES::limitSum(alphaPhiCorrs);
|
|
|
|
rhoPhi_ = dimensionedScalar(dimensionSet(1, 0, -1, 0, 0), Zero);
|
|
|
|
volScalarField sumAlpha
|
|
(
|
|
IOobject
|
|
(
|
|
"sumAlpha",
|
|
mesh_.time().timeName(),
|
|
mesh_
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(dimless, Zero)
|
|
);
|
|
|
|
phasei = 0;
|
|
|
|
forAllIter(PtrDictionary<phase>, phases_, iter)
|
|
{
|
|
phase& alpha = iter();
|
|
|
|
surfaceScalarField& alphaPhi = alphaPhiCorrs[phasei];
|
|
alphaPhi += upwind<scalar>(mesh_, phi_).flux(alpha);
|
|
|
|
MULES::explicitSolve
|
|
(
|
|
geometricOneField(),
|
|
alpha,
|
|
alphaPhi,
|
|
zeroField(),
|
|
zeroField()
|
|
);
|
|
|
|
rhoPhi_ += alphaPhi*alpha.rho();
|
|
|
|
Info<< alpha.name() << " volume fraction, min, max = "
|
|
<< alpha.weightedAverage(mesh_.V()).value()
|
|
<< ' ' << min(alpha).value()
|
|
<< ' ' << max(alpha).value()
|
|
<< endl;
|
|
|
|
sumAlpha += alpha;
|
|
|
|
phasei++;
|
|
}
|
|
|
|
Info<< "Phase-sum volume fraction, min, max = "
|
|
<< sumAlpha.weightedAverage(mesh_.V()).value()
|
|
<< ' ' << min(sumAlpha).value()
|
|
<< ' ' << max(sumAlpha).value()
|
|
<< endl;
|
|
|
|
// Correct the sum of the phase-fractions to avoid 'drift'
|
|
volScalarField sumCorr(1.0 - sumAlpha);
|
|
forAllIter(PtrDictionary<phase>, phases_, iter)
|
|
{
|
|
phase& alpha = iter();
|
|
alpha += alpha*sumCorr;
|
|
}
|
|
|
|
calcAlphas();
|
|
}
|
|
|
|
|
|
bool Foam::multiphaseMixture::read()
|
|
{
|
|
if (transportModel::read())
|
|
{
|
|
bool readOK = true;
|
|
|
|
PtrList<entry> phaseData(lookup("phases"));
|
|
label phasei = 0;
|
|
|
|
forAllIter(PtrDictionary<phase>, phases_, iter)
|
|
{
|
|
readOK &= iter().read(phaseData[phasei++].dict());
|
|
}
|
|
|
|
lookup("sigmas") >> sigmas_;
|
|
|
|
return readOK;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|