openfoam/applications/utilities/mesh/manipulation/checkMesh/checkTopology.C
Mark Olesen e5006a62d7 ENH: use simpler boundBox handling
- use default initialize boundBox instead of invertedBox
- reset() instead of assigning from invertedBox
- extend (three parameter version) and grow method
- inflate(Random) instead of extend + re-assigning
2022-11-24 12:21:01 +00:00

944 lines
27 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2017-2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "checkTopology.H"
#include "polyMesh.H"
#include "Time.H"
#include "regionSplit.H"
#include "cellSet.H"
#include "faceSet.H"
#include "pointSet.H"
#include "IOmanip.H"
#include "emptyPolyPatch.H"
#include "processorPolyPatch.H"
#include "vtkCoordSetWriter.H"
#include "vtkSurfaceWriter.H"
#include "checkTools.H"
#include "treeBoundBox.H"
#include "syncTools.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
template<class PatchType>
void Foam::checkPatch
(
const bool allGeometry,
const word& name,
const polyMesh& mesh,
const PatchType& pp,
const labelList& meshFaces,
const labelList& meshEdges,
pointSet& points
)
{
typedef typename PatchType::surfaceTopo TopoType;
const label globalSize = returnReduce(pp.size(), sumOp<label>());
Info<< " "
<< setw(20) << name
<< setw(9) << globalSize
<< setw(9) << returnReduce(pp.nPoints(), sumOp<label>());
if (globalSize == 0)
{
Info<< setw(34) << "ok (empty)";
}
else if (Pstream::parRun())
{
// Parallel - use mesh edges
// - no check for point-pinch
// - no check for consistent orientation (if that is posible to
// check?)
// (see addPatchCellLayer::globalEdgeFaces)
// From mesh edge to global face labels. Non-empty sublists only for
// pp edges.
labelListList globalEdgeFaces(mesh.nEdges());
const labelListList& edgeFaces = pp.edgeFaces();
// Global numbering
const globalIndex globalFaces(mesh.nFaces());
forAll(edgeFaces, edgei)
{
label meshEdgei = meshEdges[edgei];
const labelList& eFaces = edgeFaces[edgei];
// Store face and processor as unique tag.
labelList& globalEFaces = globalEdgeFaces[meshEdgei];
globalEFaces.setSize(eFaces.size());
forAll(eFaces, i)
{
globalEFaces[i] = globalFaces.toGlobal(meshFaces[eFaces[i]]);
}
//Pout<< "At edge:" << meshEdgei
// << " ctr:" << mesh.edges()[meshEdgei].centre(mesh.points())
// << " have eFaces:" << globalEdgeFaces[meshEdgei]
// << endl;
}
// Synchronise across coupled edges.
syncTools::syncEdgeList
(
mesh,
globalEdgeFaces,
ListOps::uniqueEqOp<label>(),
labelList() // null value
);
label labelTyp = TopoType::MANIFOLD;
forAll(meshEdges, edgei)
{
const label meshEdgei = meshEdges[edgei];
const labelList& globalEFaces = globalEdgeFaces[meshEdgei];
if (globalEFaces.size() == 1)
{
//points.insert(mesh.edges()[meshEdgei]);
labelTyp = max(labelTyp, TopoType::OPEN);
}
else if (globalEFaces.size() == 0 || globalEFaces.size() > 2)
{
points.insert(mesh.edges()[meshEdgei]);
labelTyp = max(labelTyp, TopoType::ILLEGAL);
}
}
reduce(labelTyp, maxOp<label>());
if (labelTyp == TopoType::MANIFOLD)
{
Info<< setw(34) << "ok (closed singly connected)";
}
else if (labelTyp == TopoType::OPEN)
{
Info<< setw(34)
<< "ok (non-closed singly connected)";
}
else
{
Info<< setw(34)
<< "multiply connected (shared edge)";
}
}
else
{
TopoType pTyp = pp.surfaceType();
if (pTyp == TopoType::MANIFOLD)
{
if (pp.checkPointManifold(true, &points))
{
Info<< setw(34)
<< "multiply connected (shared point)";
}
else
{
Info<< setw(34) << "ok (closed singly connected)";
}
// Add points on non-manifold edges to make set complete
pp.checkTopology(false, &points);
}
else
{
pp.checkTopology(false, &points);
if (pTyp == TopoType::OPEN)
{
Info<< setw(34)
<< "ok (non-closed singly connected)";
}
else
{
Info<< setw(34)
<< "multiply connected (shared edge)";
}
}
}
if (allGeometry)
{
const labelList& mp = pp.meshPoints();
if (returnReduceOr(mp.size()))
{
boundBox bb(pp.points(), mp, true); // reduce
Info<< ' ' << bb;
}
}
}
template<class Zone>
Foam::label Foam::checkZones
(
const polyMesh& mesh,
const ZoneMesh<Zone, polyMesh>& zones,
topoSet& set
)
{
labelList zoneID(set.maxSize(mesh), -1);
for (const auto& zone : zones)
{
for (const label elem : zone)
{
if
(
zoneID[elem] != -1
&& zoneID[elem] != zone.index()
)
{
set.insert(elem);
}
zoneID[elem] = zone.index();
}
}
return returnReduce(set.size(), sumOp<label>());
}
Foam::label Foam::checkTopology
(
const polyMesh& mesh,
const bool allTopology,
const bool allGeometry,
autoPtr<surfaceWriter>& surfWriter,
autoPtr<coordSetWriter>& setWriter
)
{
label noFailedChecks = 0;
Info<< "Checking topology..." << endl;
// Check if the boundary definition is unique
mesh.boundaryMesh().checkDefinition(true);
// Check that empty patches cover all sides of the mesh
{
label nEmpty = 0;
forAll(mesh.boundaryMesh(), patchi)
{
if (isA<emptyPolyPatch>(mesh.boundaryMesh()[patchi]))
{
nEmpty += mesh.boundaryMesh()[patchi].size();
}
}
reduce(nEmpty, sumOp<label>());
const label nCells = returnReduce(mesh.cells().size(), sumOp<label>());
// These are actually warnings, not errors.
if (nCells && (nEmpty % nCells))
{
Info<< " ***Total number of faces on empty patches"
<< " is not divisible by the number of cells in the mesh."
<< " Hence this mesh is not 1D or 2D."
<< endl;
}
}
// Check if the boundary processor patches are correct
mesh.boundaryMesh().checkParallelSync(true);
// Check names of zones are equal
mesh.cellZones().checkDefinition(true);
if (mesh.cellZones().checkParallelSync(true))
{
noFailedChecks++;
}
mesh.faceZones().checkDefinition(true);
if (mesh.faceZones().checkParallelSync(true))
{
noFailedChecks++;
}
mesh.pointZones().checkDefinition(true);
if (mesh.pointZones().checkParallelSync(true))
{
noFailedChecks++;
}
{
cellSet cells(mesh, "illegalCells", mesh.nCells()/100);
forAll(mesh.cells(), celli)
{
const cell& cFaces = mesh.cells()[celli];
if (cFaces.size() <= 3)
{
cells.insert(celli);
}
for (const label facei : cFaces)
{
if (facei < 0 || facei >= mesh.nFaces())
{
cells.insert(celli);
break;
}
}
}
const label nCells = returnReduce(cells.size(), sumOp<label>());
if (nCells > 0)
{
Info<< " Illegal cells (less than 4 faces or out of range faces)"
<< " found, number of cells: " << nCells << endl;
noFailedChecks++;
Info<< " <<Writing " << nCells
<< " illegal cells to set " << cells.name() << endl;
cells.instance() = mesh.pointsInstance();
cells.write();
if (surfWriter && surfWriter->enabled())
{
mergeAndWrite(*surfWriter, cells);
}
}
else
{
Info<< " Cell to face addressing OK." << endl;
}
}
{
pointSet points(mesh, "unusedPoints", mesh.nPoints()/100);
if (mesh.checkPoints(true, &points))
{
noFailedChecks++;
const label nPoints = returnReduce(points.size(), sumOp<label>());
Info<< " <<Writing " << nPoints
<< " unused points to set " << points.name() << endl;
points.instance() = mesh.pointsInstance();
points.write();
if (setWriter && setWriter->enabled())
{
mergeAndWrite(*setWriter, points);
}
}
}
{
faceSet faces(mesh, "upperTriangularFace", mesh.nFaces()/100);
if (mesh.checkUpperTriangular(true, &faces))
{
noFailedChecks++;
}
const label nFaces = returnReduce(faces.size(), sumOp<label>());
if (nFaces > 0)
{
Info<< " <<Writing " << nFaces
<< " unordered faces to set " << faces.name() << endl;
faces.instance() = mesh.pointsInstance();
faces.write();
if (surfWriter && surfWriter->enabled())
{
mergeAndWrite(*surfWriter, faces);
}
}
}
{
faceSet faces(mesh, "outOfRangeFaces", mesh.nFaces()/100);
if (mesh.checkFaceVertices(true, &faces))
{
noFailedChecks++;
const label nFaces = returnReduce(faces.size(), sumOp<label>());
Info<< " <<Writing " << nFaces
<< " faces with out-of-range or duplicate vertices to set "
<< faces.name() << endl;
faces.instance() = mesh.pointsInstance();
faces.write();
if (surfWriter && surfWriter->enabled())
{
mergeAndWrite(*surfWriter, faces);
}
}
}
if (allTopology)
{
cellSet cells(mesh, "zipUpCells", mesh.nCells()/100);
if (mesh.checkCellsZipUp(true, &cells))
{
noFailedChecks++;
const label nCells = returnReduce(cells.size(), sumOp<label>());
Info<< " <<Writing " << nCells
<< " cells with over used edges to set " << cells.name()
<< endl;
cells.instance() = mesh.pointsInstance();
cells.write();
if (surfWriter && surfWriter->enabled())
{
mergeAndWrite(*surfWriter, cells);
}
}
}
if (allTopology)
{
faceSet faces(mesh, "edgeFaces", mesh.nFaces()/100);
if (mesh.checkFaceFaces(true, &faces))
{
noFailedChecks++;
}
const label nFaces = returnReduce(faces.size(), sumOp<label>());
if (nFaces > 0)
{
Info<< " <<Writing " << nFaces
<< " faces with non-standard edge connectivity to set "
<< faces.name() << endl;
faces.instance() = mesh.pointsInstance();
faces.write();
if (surfWriter && surfWriter->enabled())
{
mergeAndWrite(*surfWriter, faces);
}
}
}
if (allTopology)
{
labelList nInternalFaces(mesh.nCells(), Zero);
for (label facei = 0; facei < mesh.nInternalFaces(); facei++)
{
nInternalFaces[mesh.faceOwner()[facei]]++;
nInternalFaces[mesh.faceNeighbour()[facei]]++;
}
const polyBoundaryMesh& patches = mesh.boundaryMesh();
forAll(patches, patchi)
{
if (patches[patchi].coupled())
{
const labelUList& owners = patches[patchi].faceCells();
for (const label facei : owners)
{
nInternalFaces[facei]++;
}
}
}
cellSet oneCells(mesh, "oneInternalFaceCells", mesh.nCells()/100);
cellSet twoCells(mesh, "twoInternalFacesCells", mesh.nCells()/100);
forAll(nInternalFaces, celli)
{
if (nInternalFaces[celli] <= 1)
{
oneCells.insert(celli);
}
else if (nInternalFaces[celli] == 2)
{
twoCells.insert(celli);
}
}
const label nOneCells = returnReduce(oneCells.size(), sumOp<label>());
if (nOneCells > 0)
{
Info<< " <<Writing " << nOneCells
<< " cells with zero or one non-boundary face to set "
<< oneCells.name()
<< endl;
oneCells.instance() = mesh.pointsInstance();
oneCells.write();
if (surfWriter && surfWriter->enabled())
{
mergeAndWrite(*surfWriter, oneCells);
}
}
const label nTwoCells = returnReduce(twoCells.size(), sumOp<label>());
if (nTwoCells > 0)
{
Info<< " <<Writing " << nTwoCells
<< " cells with two non-boundary faces to set "
<< twoCells.name()
<< endl;
twoCells.instance() = mesh.pointsInstance();
twoCells.write();
if (surfWriter && surfWriter->enabled())
{
mergeAndWrite(*surfWriter, twoCells);
}
}
}
{
regionSplit rs(mesh);
if (rs.nRegions() <= 1)
{
Info<< " Number of regions: " << rs.nRegions() << " (OK)."
<< endl;
}
else
{
Info<< " *Number of regions: " << rs.nRegions() << endl;
Info<< " The mesh has multiple regions which are not connected "
"by any face." << endl
<< " <<Writing region information to "
<< mesh.time().timeName()/"cellToRegion"
<< endl;
labelIOList ctr
(
IOobject
(
"cellToRegion",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
rs
);
ctr.write();
// Points in multiple regions
pointSet points
(
mesh,
"multiRegionPoints",
mesh.nPoints()/1000
);
// Is region disconnected
boolList regionDisconnected(rs.nRegions(), true);
if (allTopology)
{
// -1 : not assigned
// -2 : multiple regions
// >= 0 : single region
labelList pointToRegion(mesh.nPoints(), -1);
for
(
label facei = mesh.nInternalFaces();
facei < mesh.nFaces();
++facei
)
{
const label regioni = rs[mesh.faceOwner()[facei]];
const face& f = mesh.faces()[facei];
for (const label verti : f)
{
label& pRegion = pointToRegion[verti];
if (pRegion == -1)
{
pRegion = regioni;
}
else if (pRegion == -2)
{
// Already marked
regionDisconnected[regioni] = false;
}
else if (pRegion != regioni)
{
// Multiple regions
regionDisconnected[regioni] = false;
regionDisconnected[pRegion] = false;
pRegion = -2;
points.insert(verti);
}
}
}
Pstream::listCombineReduce(regionDisconnected, andEqOp<bool>());
}
// write cellSet for each region
PtrList<cellSet> cellRegions(rs.nRegions());
for (label i = 0; i < rs.nRegions(); i++)
{
cellRegions.set
(
i,
new cellSet
(
mesh,
"region" + Foam::name(i),
mesh.nCells()/100
)
);
}
forAll(rs, i)
{
cellRegions[rs[i]].insert(i);
}
for (label i = 0; i < rs.nRegions(); i++)
{
Info<< " <<Writing region " << i;
if (allTopology)
{
if (regionDisconnected[i])
{
Info<< " (fully disconnected)";
}
else
{
Info<< " (point connected)";
}
}
Info<< " with "
<< returnReduce(cellRegions[i].size(), sumOp<scalar>())
<< " cells to cellSet " << cellRegions[i].name() << endl;
cellRegions[i].write();
}
const label nPoints = returnReduce(points.size(), sumOp<label>());
if (nPoints)
{
Info<< " <<Writing " << nPoints
<< " points that are in multiple regions to set "
<< points.name() << endl;
points.write();
if (setWriter && setWriter->enabled())
{
mergeAndWrite(*setWriter, points);
}
}
}
}
// Non-manifold points
pointSet points
(
mesh,
"nonManifoldPoints",
mesh.nPoints()/1000
);
{
Info<< "\nChecking patch topology for multiply connected"
<< " surfaces..." << endl;
const polyBoundaryMesh& patches = mesh.boundaryMesh();
Pout.setf(ios_base::left);
Info<< " "
<< setw(20) << "Patch"
<< setw(9) << "Faces"
<< setw(9) << "Points"
<< "Surface topology";
if (allGeometry)
{
Info<< " Bounding box";
}
Info<< endl;
forAll(patches, patchi)
{
const polyPatch& pp = patches[patchi];
if (!isA<processorPolyPatch>(pp))
{
checkPatch
(
allGeometry,
pp.name(),
mesh,
pp,
identity(pp.size(), pp.start()),
pp.meshEdges(),
points
);
Info<< endl;
}
}
//Info.setf(ios_base::right);
}
{
Info<< "\nChecking faceZone topology for multiply connected"
<< " surfaces..." << endl;
Pout.setf(ios_base::left);
const faceZoneMesh& faceZones = mesh.faceZones();
if (faceZones.size())
{
Info<< " "
<< setw(20) << "FaceZone"
<< setw(9) << "Faces"
<< setw(9) << "Points"
<< setw(34) << "Surface topology";
if (allGeometry)
{
Info<< " Bounding box";
}
Info<< endl;
for (const faceZone& fz : faceZones)
{
checkPatch
(
allGeometry,
fz.name(),
mesh,
fz(), // patch
fz, // mesh face labels
fz.meshEdges(), // mesh edge labels
points
);
Info<< endl;
}
// Check for duplicates
if (allTopology)
{
faceSet mzFaces(mesh, "multiZoneFaces", mesh.nFaces()/100);
const label nMulti = checkZones(mesh, faceZones, mzFaces);
if (nMulti)
{
Info<< " <<Writing " << nMulti
<< " faces that are in multiple zones"
<< " to set " << mzFaces.name() << endl;
mzFaces.instance() = mesh.pointsInstance();
mzFaces.write();
if (surfWriter && surfWriter->enabled())
{
mergeAndWrite(*surfWriter, mzFaces);
}
}
}
}
else
{
Info<< " No faceZones found."<<endl;
}
}
const label nPoints = returnReduce(points.size(), sumOp<label>());
if (nPoints)
{
Info<< " <<Writing " << nPoints
<< " conflicting points to set " << points.name() << endl;
points.instance() = mesh.pointsInstance();
points.write();
if (setWriter && setWriter->enabled())
{
mergeAndWrite(*setWriter, points);
}
}
{
Info<< "\nChecking basic cellZone addressing..." << endl;
Pout.setf(ios_base::left);
const cellZoneMesh& cellZones = mesh.cellZones();
if (cellZones.size())
{
Info<< " "
<< setw(20) << "CellZone"
<< setw(13) << "Cells"
<< setw(13) << "Points"
<< setw(13) << "Volume"
<< "BoundingBox" << endl;
const cellList& cells = mesh.cells();
const faceList& faces = mesh.faces();
const scalarField& cellVolumes = mesh.cellVolumes();
bitSet isZonePoint(mesh.nPoints());
for (const cellZone& cZone : cellZones)
{
boundBox bb;
isZonePoint.reset(); // clears all bits (reset count)
scalar v = 0.0;
for (const label celli : cZone)
{
v += cellVolumes[celli];
for (const label facei : cells[celli])
{
const face& f = faces[facei];
for (const label verti : f)
{
if (isZonePoint.set(verti))
{
bb.add(mesh.points()[verti]);
}
}
}
}
bb.reduce(); // Global min/max
Info<< " "
<< setw(19) << cZone.name()
<< ' ' << setw(12)
<< returnReduce(cZone.size(), sumOp<label>())
<< ' ' << setw(12)
<< returnReduce(isZonePoint.count(), sumOp<label>())
<< ' ' << setw(12)
<< returnReduce(v, sumOp<scalar>())
<< ' ' << bb << endl;
}
// Check for duplicates
if (allTopology)
{
cellSet mzCells(mesh, "multiZoneCells", mesh.nCells()/100);
const label nMulti = checkZones(mesh, cellZones, mzCells);
if (nMulti)
{
Info<< " <<Writing " << nMulti
<< " cells that are in multiple zones"
<< " to set " << mzCells.name() << endl;
mzCells.instance() = mesh.pointsInstance();
mzCells.write();
if (surfWriter && surfWriter->enabled())
{
mergeAndWrite(*surfWriter, mzCells);
}
}
}
}
else
{
Info<< " No cellZones found."<<endl;
}
}
{
Info<< "\nChecking basic pointZone addressing..." << endl;
Pout.setf(ios_base::left);
const pointZoneMesh& pointZones = mesh.pointZones();
if (pointZones.size())
{
Info<< " "
<< setw(20) << "PointZone"
<< setw(8) << "Points"
<< "BoundingBox" << nl;
for (const auto& zone : pointZones)
{
boundBox bb
(
mesh.points(),
static_cast<const labelUList&>(zone),
true // Reduce (global min/max)
);
Info<< " "
<< setw(20) << zone.name()
<< setw(8)
<< returnReduce(zone.size(), sumOp<label>())
<< bb << endl;
}
// Check for duplicates
if (allTopology)
{
pointSet mzPoints(mesh, "multiZonePoints", mesh.nPoints()/100);
const label nMulti = checkZones(mesh, pointZones, mzPoints);
if (nMulti)
{
Info<< " <<Writing " << nMulti
<< " points that are in multiple zones"
<< " to set " << mzPoints.name() << endl;
mzPoints.instance() = mesh.pointsInstance();
mzPoints.write();
if (setWriter && setWriter->enabled())
{
mergeAndWrite(*setWriter, mzPoints);
}
}
}
}
else
{
Info<< " No pointZones found."<<endl;
}
}
// Force creation of all addressing if requested.
// Errors will be reported as required
if (allTopology)
{
mesh.cells();
mesh.faces();
mesh.edges();
mesh.points();
mesh.faceOwner();
mesh.faceNeighbour();
mesh.cellCells();
mesh.edgeCells();
mesh.pointCells();
mesh.edgeFaces();
mesh.pointFaces();
mesh.cellEdges();
mesh.faceEdges();
mesh.pointEdges();
}
return noFailedChecks;
}
// ************************************************************************* //