openfoam/applications/test/searchableSphere/Test-searchableSphere.C
Victor Olesen e9d130f022 ENH: support general searchable spheroid (issue #1901)
- a sphere/spheroid can be specified as a single radius or three radii.
  If all three values happen to be identical, they are collapsed to a
  single value. Examples,

      radius 2;
      radius (2 2 2);
      radius (2 3 4);
      radius (2 2 4);

  The search for nearest point on an ellipse or ellipsoid follows the
  description given by Geometric Tools (David Eberly), which also
  include some pseudo code. The content is CC-BY 4.0

  In the search algorithm, symmetry is exploited and the searching is
  confined to the first (+x,+y,+z) octant, and the radii are ordered
  from largest to smallest.

  Searching is optimized for sphere, prolate and oblate spheroids.
2020-10-28 16:04:12 +01:00

247 lines
5.4 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
Test-searchableSphere
Description
Basic tests for searchable sphere
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "searchableSphere.H"
#include "unitConversion.H"
#include "Random.H"
using namespace Foam;
using namespace Foam::constant::mathematical;
//- Evaluate using implicit form of the spheroid equation.
scalar evaluate(const point& p, const searchableSphere& sph)
{
return
(
sqr((p.x() - sph.centre().x()) / sph.radii().x())
+ sqr((p.y() - sph.centre().y()) / sph.radii().y())
+ sqr((p.z() - sph.centre().z()) / sph.radii().z())
);
}
void doTest1(const searchableSphere& sph)
{
Info<< nl << "origin:" << sph.centre() << " radius:" << sph.radius();
if (sph.shape() == searchableSphere::SPHERE)
{
Info<< " [sphere]" << nl;
}
else
{
Info<< " radii:" << sph.radii() << nl;
}
// boundBox bb(point(0, 0, 0), point(30, 30, 30));
// Info<< "overlaps: " << Switch(sph.overlaps(bb)) << endl;
Pair<scalar> angles(-pi/2, pi/2);
point surfPt = sph.surfacePoint(angles.first(), angles.second());
vector norm = sph.surfaceNormal(angles.first(), angles.second());
Info<< "point at ("
<< radToDeg(angles.first()) << ' '
<< radToDeg(angles.second()) << ") deg" << nl;
Info<< "surface" << nl
<< " eval: " << evaluate(surfPt, sph) << nl
<< " point:" << surfPt << nl
<< " normal:" << norm << nl;
{
List<pointIndexHit> hits(1);
vectorField norms;
hits[0].hitPoint(surfPt, 0);
sph.getNormal(hits, norms);
Info<< " normal:" << norms[0] << nl;
}
Random rndGen;
point testPt1 =
(
surfPt + 0.1*sph.radius()*norm
+ 0.01*rndGen.sample01<vector>()
);
// Scale by max radius and shift by origin
const auto adjustPoint =
[&](point& p) -> void
{
p *= sph.radius();
p += sph.centre();
};
List<pointIndexHit> hits;
pointField query
({
testPt1,
point(-2, -2, -2)
});
forAll(query, pointi)
{
if (pointi) adjustPoint(query[pointi]);
}
sph.findNearest
(
query,
scalarField(query.size(), GREAT),
hits
);
Info<< "query:" << nl;
forAll(hits, pointi)
{
// Should never miss
Info<< " "
<< query[pointi] << " => "
<< hits[pointi].hitPoint() << nl;
}
pointField lineBeg
({
point(-2, -2, -2),
point(0,0,0),
point(0,0,0),
point(0,0,0)
});
pointField lineEnd
({
point(2, 2, 2),
point(2, 0, 0),
point(0, 2, 0),
point(0, 0, 4)
});
for (point& p : lineBeg)
{
adjustPoint(p);
}
for (point& p : lineEnd)
{
adjustPoint(p);
}
sph.findLineAny
(
lineBeg,
lineEnd,
hits
);
Info<< "lines:" << nl;
forAll(hits, pointi)
{
// Should never miss
Info<< " "
<< lineBeg[pointi] << " -> "
<< lineEnd[pointi] << " = "
<< hits[pointi].hitPoint() << nl;
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::noBanner();
#include "setRootCase.H"
// Use dummy Time for objectRegistry
autoPtr<Time> dummyTimePtr(Time::New());
const IOobject io
(
"sphere",
*dummyTimePtr,
IOobject::NO_READ,
IOobject::NO_WRITE,
false // do not register
);
Info<< "Testing searchable sphere" << endl;
doTest1
(
searchableSphere
(
io,
point(0.5, 0.5, 0.5),
scalar(2)
)
);
doTest1
(
searchableSphere
(
io,
point(0.5, 0.5, 0.5),
vector(1.999, 2, 2.001)
)
);
doTest1
(
searchableSphere
(
io,
point(0, 0, 0),
vector(3, 3, 4)
)
);
Info<< "\nDone\n" << endl;
return 0;
}
// ************************************************************************* //