COMP: define labelSphericalTensor::I - remove spurious 'labelI' global constant (labelSphericalTensor::I) STYLE: replace use of deprecated Tensor vectorComponent STYLE: avoid bit-wise assignment of bool (VectorSpace compare ops)
859 lines
24 KiB
C
859 lines
24 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | www.openfoam.com
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
Copyright (C) 2020-2022 OpenCFD Ltd.
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Application
|
|
Test-SymmTensor
|
|
|
|
Description
|
|
Tests for \c SymmTensor constructors, member functions and operators
|
|
using \c floatScalar, \c doubleScalar, and \c complex base types.
|
|
|
|
Eigen decomposition tests for \c symmTensor, i.e. SymmTensor<scalar>.
|
|
|
|
Cross-checks were obtained from 'NumPy 1.15.1' and 'SciPy 1.1.0' if no
|
|
theoretical cross-check exists (like eigendecomposition relations), and
|
|
were hard-coded for elementwise comparisons.
|
|
|
|
For \c complex base type, the cross-checks do only involve zero imag part.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "symmTensor.H"
|
|
#include "transform.H"
|
|
#include "Random.H"
|
|
#include "scalar.H"
|
|
#include "complex.H"
|
|
|
|
using namespace Foam;
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
// Total number of unit tests
|
|
unsigned nTest_ = 0;
|
|
|
|
|
|
// Total number of failed unit tests
|
|
unsigned nFail_ = 0;
|
|
|
|
|
|
// Create a random symmTensor
|
|
symmTensor makeRandomContainer(Random& rnd)
|
|
{
|
|
symmTensor T(Zero);
|
|
std::generate(T.begin(), T.end(), [&]{ return rnd.GaussNormal<scalar>(); });
|
|
return T;
|
|
}
|
|
|
|
|
|
// Create a symmTensor based on a given value
|
|
template<class Type>
|
|
typename std::enable_if
|
|
<
|
|
std::is_same<floatScalar, Type>::value ||
|
|
std::is_same<doubleScalar, Type>::value,
|
|
symmTensor
|
|
>::type makeContainer(const Type val)
|
|
{
|
|
symmTensor T(Zero);
|
|
std::fill(T.begin(), T.end(), val);
|
|
return T;
|
|
}
|
|
|
|
|
|
// Compare two floating point types, and print output.
|
|
// Do ++nFail_ if values of two objects are not equal within a given tolerance.
|
|
// The function is converted from PEP-485.
|
|
template<class Type>
|
|
typename std::enable_if<pTraits<Type>::rank == 0, void>::type
|
|
cmp
|
|
(
|
|
const word& msg,
|
|
const Type& x,
|
|
const Type& y,
|
|
const scalar absTol = 0, //<! useful for cmps near zero
|
|
const scalar relTol = 1e-8 //<! are values the same within 8 decimals
|
|
)
|
|
{
|
|
Info<< msg << x << "?=" << y << endl;
|
|
|
|
unsigned nFail = 0;
|
|
|
|
if (max(absTol, relTol*max(mag(x), mag(y))) < mag(x - y))
|
|
{
|
|
++nFail;
|
|
}
|
|
|
|
if (nFail)
|
|
{
|
|
Info<< nl
|
|
<< " #### Fail in " << nFail << " comps ####" << nl << endl;
|
|
++nFail_;
|
|
}
|
|
++nTest_;
|
|
}
|
|
|
|
|
|
// Compare two containers elementwise, and print output.
|
|
// Do ++nFail_ if two components are not equal within a given tolerance.
|
|
// The function is converted from PEP-485
|
|
template<class Type>
|
|
typename std::enable_if<pTraits<Type>::rank != 0, void>::type
|
|
cmp
|
|
(
|
|
const word& msg,
|
|
const Type& x,
|
|
const Type& y,
|
|
const scalar absTol = 0,
|
|
const scalar relTol = 1e-8
|
|
)
|
|
{
|
|
Info<< msg << x << "?=" << y << endl;
|
|
|
|
unsigned nFail = 0;
|
|
|
|
for (direction i = 0; i < pTraits<Type>::nComponents; ++i)
|
|
{
|
|
if (max(absTol, relTol*max(mag(x[i]), mag(y[i]))) < mag(x[i] - y[i]))
|
|
{
|
|
++nFail;
|
|
}
|
|
}
|
|
|
|
if (nFail)
|
|
{
|
|
Info<< nl
|
|
<< " #### Fail in " << nFail << " comps ####" << nl << endl;
|
|
++nFail_;
|
|
}
|
|
++nTest_;
|
|
}
|
|
|
|
|
|
// Create each constructor of SymmTensor<Type>, and print output
|
|
template<class Type>
|
|
void test_constructors(Type)
|
|
{
|
|
{
|
|
Info<< "# Construct initialized to zero:" << nl;
|
|
const SymmTensor<Type> sT(Zero);
|
|
Info<< sT << endl;
|
|
}
|
|
{
|
|
Info<< "# Construct given VectorSpace of the same rank:" << nl;
|
|
const VectorSpace<SymmTensor<Type>, Type, 6> M(Zero);
|
|
const SymmTensor<Type> sT(M);
|
|
Info<< sT << endl;
|
|
}
|
|
{
|
|
Info<< "# Construct given SphericalTensor:" << nl;
|
|
const SphericalTensor<Type> Sp(Type(5));
|
|
const SymmTensor<Type> sT(Sp);
|
|
Info<< sT << endl;
|
|
}
|
|
{
|
|
Info<< "# Construct given the six components:" << nl;
|
|
const SymmTensor<Type> sT
|
|
(
|
|
Type(1), Type(2), Type(-3),
|
|
Type(5), Type(-6),
|
|
Type(-9)
|
|
);
|
|
Info<< sT << endl;
|
|
}
|
|
{
|
|
Info<< "# Copy construct:" << nl;
|
|
const SymmTensor<Type> sT(Zero);
|
|
const SymmTensor<Type> copysT(sT);
|
|
Info<< sT << tab << copysT << endl;
|
|
}
|
|
}
|
|
|
|
|
|
// Execute each member function of SymmTensor<Type>, and print output
|
|
template<class Type>
|
|
void test_member_funcs(Type)
|
|
{
|
|
SymmTensor<Type> sT
|
|
(
|
|
Type(1), Type(2), Type(-3),
|
|
Type(5), Type(-6),
|
|
Type(-9)
|
|
);
|
|
const SymmTensor<Type> csT
|
|
(
|
|
Type(1), Type(2), Type(-3),
|
|
Type(5), Type(-6),
|
|
Type(-9)
|
|
);
|
|
|
|
Info<< "# Operand: " << nl
|
|
<< " SymmTensor = " << sT << endl;
|
|
|
|
|
|
{
|
|
Info<< "# Component access:" << nl;
|
|
|
|
SymmTensor<Type> cpsT
|
|
(
|
|
sT.xx(), sT.xy(), sT.xz(),
|
|
sT.yy(), sT.yz(),
|
|
sT.zz()
|
|
);
|
|
cmp(" 'SymmTensor' access:", sT, cpsT);
|
|
cmp(" xy()=yx():", sT.xy(), sT.yx());
|
|
cmp(" xz()=zx():", sT.xz(), sT.zx());
|
|
cmp(" yz()=zy():", sT.yz(), sT.zy());
|
|
|
|
const SymmTensor<Type> cpcsT
|
|
(
|
|
csT.xx(), csT.xy(), csT.xz(),
|
|
csT.yy(), csT.yz(),
|
|
csT.zz()
|
|
);
|
|
cmp(" 'const SymmTensor' access:", csT, cpcsT);
|
|
cmp(" xy()=yx():", sT.xy(), sT.yx());
|
|
cmp(" xz()=zx():", sT.xz(), sT.zx());
|
|
cmp(" yz()=zy():", sT.yz(), sT.zy());
|
|
}
|
|
{
|
|
Info<< "# Diagonal access:" << nl;
|
|
|
|
cmp
|
|
(
|
|
" 'SymmTensor'.diag():",
|
|
sT.diag(),
|
|
Vector<Type>(Type(1), Type(5), Type(-9))
|
|
);
|
|
cmp
|
|
(
|
|
" 'const SymmTensor'.diag():",
|
|
csT.diag(),
|
|
Vector<Type>(Type(1), Type(5), Type(-9))
|
|
);
|
|
|
|
|
|
Info<< "# Diagonal manipulation:" << nl;
|
|
|
|
sT.diag(Vector<Type>(Type(-10), Type(-15), Type(-20)));
|
|
cmp
|
|
(
|
|
" 'SymmTensor'.diag('Vector'):",
|
|
sT.diag(),
|
|
Vector<Type>(Type(-10), Type(-15), Type(-20))
|
|
);
|
|
}
|
|
{
|
|
Info<< "# Tensor operations:" << nl;
|
|
|
|
Info<< " Transpose:" << nl;
|
|
cmp(" 'SymmTensor'.T():", sT.T(), sT);
|
|
}
|
|
{
|
|
Info<< "# Member operators:" << nl;
|
|
|
|
sT = SphericalTensor<Type>(Type(5));
|
|
cmp
|
|
(
|
|
" Assign to a SphericalTensor:",
|
|
sT,
|
|
SymmTensor<Type>
|
|
(
|
|
Type(5), Zero, Zero,
|
|
Type(5), Zero,
|
|
Type(5)
|
|
)
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
// Execute each global function of SymmTensor<Type>, and print output
|
|
template<class Type>
|
|
void test_global_funcs(Type)
|
|
{
|
|
const SymmTensor<Type> sT
|
|
(
|
|
Type(1), Type(2), Type(-3),
|
|
Type(5), Type(-6),
|
|
Type(-9)
|
|
);
|
|
|
|
Info<< "# Operand: " << nl
|
|
<< " SymmTensor = " << sT << nl << endl;
|
|
|
|
|
|
cmp(" Trace = ", tr(sT), Type(-3));
|
|
cmp(" Spherical part = ", sph(sT), SphericalTensor<Type>(tr(sT)/Type(3)));
|
|
cmp(" Symmetric part = ", symm(sT), sT);
|
|
cmp(" Twice the symmetric part = ", twoSymm(sT), 2*sT);
|
|
cmp
|
|
(
|
|
" Deviatoric part = ",
|
|
dev(sT),
|
|
SymmTensor<Type>
|
|
(
|
|
Type(2), Type(2), Type(-3),
|
|
Type(6), Type(-6),
|
|
Type(-8)
|
|
)
|
|
);
|
|
cmp(" Two-third deviatoric part = ", dev2(sT), sT - 2*sph(sT));
|
|
cmp(" Determinant = ", det(sT), Type(-17.999999999999996));
|
|
cmp
|
|
(
|
|
" Cofactor tensor = ",
|
|
cof(sT),
|
|
SymmTensor<Type>
|
|
(
|
|
Type(-81), Type(36), Type(3),
|
|
Type(-18), Type(0),
|
|
Type(1)
|
|
)
|
|
);
|
|
cmp
|
|
(
|
|
" Inverse = ",
|
|
inv(sT, det(sT)),
|
|
SymmTensor<Type>
|
|
(
|
|
Type(4.5), Type(-2), Type(-0.16666667),
|
|
Type(1), Type(0),
|
|
Type(-0.05555556)
|
|
),
|
|
1e-8
|
|
);
|
|
cmp
|
|
(
|
|
" Inverse (another) = ",
|
|
inv(sT),
|
|
SymmTensor<Type>
|
|
(
|
|
Type(4.5), Type(-2), Type(-0.16666667),
|
|
Type(1), Type(0),
|
|
Type(-0.05555556)
|
|
),
|
|
1e-8
|
|
);
|
|
cmp(" First invariant = ", invariantI(sT), Type(-3));
|
|
cmp(" Second invariant = ", invariantII(sT), Type(-98));
|
|
cmp(" Third invariant = ", invariantIII(sT), Type(-17.999999999999996));
|
|
cmp
|
|
(
|
|
" Inner-product with self = ",
|
|
innerSqr(sT),
|
|
SymmTensor<Type>
|
|
(
|
|
Type(14), Type(30), Type(12),
|
|
Type(65), Type(18),
|
|
Type(126)
|
|
)
|
|
);
|
|
cmp(" Square of Frobenius norm = ", magSqr(sT), Type(205));
|
|
}
|
|
|
|
|
|
// Execute each global operator of SymmTensor<Type>, and print output
|
|
template<class Type>
|
|
void test_global_opers(Type)
|
|
{
|
|
const Tensor<Type> T
|
|
(
|
|
Type(1), Type(2), Type(-3),
|
|
Type(4), Type(5), Type(-6),
|
|
Type(7), Type(8), Type(-9)
|
|
);
|
|
const SymmTensor<Type> sT
|
|
(
|
|
Type(1), Type(2), Type(-3),
|
|
Type(5), Type(-6),
|
|
Type(-9)
|
|
);
|
|
const SphericalTensor<Type> spT(Type(1));
|
|
const Vector<Type> v(Type(3), Type(2), Type(1));
|
|
const Type x(4);
|
|
|
|
Info<< "# Operands:" << nl
|
|
<< " Tensor = " << T << nl
|
|
<< " SymmTensor = " << sT << nl
|
|
<< " SphericalTensor = " << spT << nl
|
|
<< " Vector = " << v << nl
|
|
<< " Type = " << x << endl;
|
|
|
|
|
|
cmp
|
|
(
|
|
" Sum of SpTensor-SymmTensor = ",
|
|
(spT + sT),
|
|
SymmTensor<Type>
|
|
(
|
|
Type(2), Type(2), Type(-3),
|
|
Type(6), Type(-6),
|
|
Type(-8)
|
|
)
|
|
);
|
|
cmp
|
|
(
|
|
" Sum of SymmTensor-SpTensor = ",
|
|
(sT + spT),
|
|
SymmTensor<Type>
|
|
(
|
|
Type(2), Type(2), Type(-3),
|
|
Type(6), Type(-6),
|
|
Type(-8)
|
|
)
|
|
);
|
|
cmp
|
|
(
|
|
" Subtract SymmTensor from SpTensor = ",
|
|
(spT - sT),
|
|
SymmTensor<Type>
|
|
(
|
|
Type(0), Type(-2), Type(3),
|
|
Type(-4), Type(6),
|
|
Type(10)
|
|
)
|
|
);
|
|
cmp
|
|
(
|
|
" Subtract SpTensor from SymmTensor = ",
|
|
(sT - spT),
|
|
SymmTensor<Type>
|
|
(
|
|
Type(0), Type(2), Type(-3),
|
|
Type(4), Type(-6),
|
|
Type(-10)
|
|
)
|
|
);
|
|
cmp
|
|
(
|
|
" Hodge dual of a SymmTensor",
|
|
*sT,
|
|
Vector<Type>(Type(-6), Type(3), Type(2))
|
|
);
|
|
cmp
|
|
(
|
|
" Division of a SymmTensor by a Type",
|
|
sT/x,
|
|
SymmTensor<Type>
|
|
(
|
|
Type(0.25), Type(0.5), Type(-0.75),
|
|
Type(1.25), Type(-1.5),
|
|
Type(-2.25)
|
|
)
|
|
);
|
|
cmp
|
|
(
|
|
" Inner-product of SymmTensor-SymmTensor = ",
|
|
(sT & sT),
|
|
Tensor<Type>
|
|
(
|
|
Type(14), Type(30), Type(12),
|
|
Type(30), Type(65), Type(18),
|
|
Type(12), Type(18), Type(126)
|
|
)
|
|
);
|
|
cmp
|
|
(
|
|
" Inner-product of SpTensor-SymmTensor = ",
|
|
(spT & sT),
|
|
SymmTensor<Type>
|
|
(
|
|
Type(1), Type(2), Type(-3),
|
|
Type(5), Type(-6),
|
|
Type(-9)
|
|
)
|
|
);
|
|
cmp
|
|
(
|
|
" Inner-product of SymmTensor-SpTensor = ",
|
|
(sT & spT),
|
|
SymmTensor<Type>
|
|
(
|
|
Type(1), Type(2), Type(-3),
|
|
Type(5), Type(-6),
|
|
Type(-9)
|
|
)
|
|
);
|
|
cmp
|
|
(
|
|
" Inner-product of SymmTensor-Vector = ",
|
|
(sT & v),
|
|
Vector<Type>(Type(4), Type(10), Type(-30)) // Column-vector
|
|
);
|
|
cmp
|
|
(
|
|
" Inner-product of Vector-SymmTensor = ",
|
|
(v & sT),
|
|
Vector<Type>(Type(4), Type(10), Type(-30)) // Row-vector
|
|
);
|
|
cmp(" D-inner-product of SymmTensor-SymmTensor = ", (sT && sT), Type(205));
|
|
cmp(" D-inner-product of SymmTensor-SpTensor = ", (sT && spT), Type(-3));
|
|
cmp(" D-inner-product of SpTensor-SymmTensor = ", (spT && sT), Type(-3));
|
|
}
|
|
|
|
|
|
// Return false if given eigenvalues fail to satisy eigenvalue relations
|
|
// Relations: (Beauregard & Fraleigh (1973), ISBN 0-395-14017-X, p. 307)
|
|
void test_eigenvalues(const symmTensor& T, const vector& EVals)
|
|
{
|
|
{
|
|
const scalar determinant = det(T);
|
|
const scalar EValsProd = EVals.x()*EVals.y()*EVals.z();
|
|
cmp("# Product of eigenvalues = det(T):", EValsProd, determinant, 1e-6);
|
|
}
|
|
{
|
|
const scalar trace = tr(T);
|
|
scalar EValsSum = 0.0;
|
|
for (const auto& val : EVals)
|
|
{
|
|
EValsSum += val;
|
|
}
|
|
cmp("# Sum of eigenvalues = trace(T):", EValsSum, trace);
|
|
}
|
|
}
|
|
|
|
|
|
// Return false if a given eigenvalue-eigenvector pair
|
|
// fails to satisfy the characteristic equation
|
|
void test_characteristic_equation
|
|
(
|
|
const symmTensor& T,
|
|
const vector& EVals,
|
|
const tensor& EVecs
|
|
)
|
|
{
|
|
Info<< "# Characteristic equation:" << nl;
|
|
for (direction dir = 0; dir < pTraits<vector>::nComponents; ++dir)
|
|
{
|
|
Info<< "EVal = " << EVals[dir] << nl
|
|
<< "EVec = " << EVecs.row(dir) << endl;
|
|
const vector leftSide(T & EVecs.row(dir));
|
|
const vector rightSide(EVals[dir]*EVecs.row(dir));
|
|
const vector X(leftSide - rightSide);
|
|
|
|
for (const auto x : X)
|
|
{
|
|
cmp(" (T & EVec - EVal*EVec) = 0:", x, 0.0, 1e-5);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Return false if the eigen functions fail to satisfy relations
|
|
void test_eigen_funcs(const symmTensor& T)
|
|
{
|
|
Info<< "# Operand:" << nl
|
|
<< " symmTensor = " << T << nl;
|
|
|
|
|
|
Info<< "# Return eigenvalues of a given symmTensor:" << nl;
|
|
const vector EVals(eigenValues(T));
|
|
Info<< EVals << endl;
|
|
test_eigenvalues(T, EVals);
|
|
|
|
Info<< "# Return eigenvectors of a given symmTensor corresponding to"
|
|
<< " given eigenvalues:" << nl;
|
|
const tensor EVecs0(eigenVectors(T, EVals));
|
|
Info<< EVecs0 << endl;
|
|
test_characteristic_equation(T, EVals, EVecs0);
|
|
|
|
Info<< "# Return eigenvectors of a given symmTensor by computing"
|
|
<< " the eigenvalues of the symmTensor in the background:" << nl;
|
|
const tensor EVecs1(eigenVectors(T));
|
|
Info<< EVecs1 << endl;
|
|
}
|
|
|
|
|
|
// Do compile-time recursion over the given types
|
|
template<std::size_t I = 0, typename... Tp>
|
|
inline typename std::enable_if<I == sizeof...(Tp), void>::type
|
|
run_tests(const std::tuple<Tp...>& types, const List<word>& typeID){}
|
|
|
|
|
|
template<std::size_t I = 0, typename... Tp>
|
|
inline typename std::enable_if<I < sizeof...(Tp), void>::type
|
|
run_tests(const std::tuple<Tp...>& types, const List<word>& typeID)
|
|
{
|
|
Info<< nl << " ## Test constructors: "<< typeID[I] <<" ##" << nl;
|
|
test_constructors(std::get<I>(types));
|
|
|
|
Info<< nl << " ## Test member functions: "<< typeID[I] <<" ##" << nl;
|
|
test_member_funcs(std::get<I>(types));
|
|
|
|
Info<< nl << " ## Test global functions: "<< typeID[I] << " ##" << nl;
|
|
test_global_funcs(std::get<I>(types));
|
|
|
|
Info<< nl << " ## Test global operators: "<< typeID[I] <<" ##" << nl;
|
|
test_global_opers(std::get<I>(types));
|
|
|
|
run_tests<I + 1, Tp...>(types, typeID);
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * Main Program * * * * * * * * * * * * * * * //
|
|
|
|
int main()
|
|
{
|
|
const std::tuple<floatScalar, doubleScalar, complex> types
|
|
(
|
|
std::make_tuple(Zero, Zero, Zero)
|
|
);
|
|
|
|
const List<word> typeID
|
|
({
|
|
"SymmTensor<floatScalar>",
|
|
"SymmTensor<doubleScalar>",
|
|
"SymmTensor<complex>"
|
|
});
|
|
|
|
run_tests(types, typeID);
|
|
|
|
|
|
Info<< nl << " ## Test symmTensor eigen functions: ##" << nl;
|
|
const label numberOfTests = 10000;
|
|
Random rndGen(1234);
|
|
|
|
for (label i = 0; i < numberOfTests; ++i)
|
|
{
|
|
const symmTensor T(makeRandomContainer(rndGen));
|
|
test_eigen_funcs(T);
|
|
}
|
|
|
|
{
|
|
Info<< nl << " ## A zero symmTensor: ##"<< nl;
|
|
const symmTensor zeroT(Zero);
|
|
test_eigen_funcs(zeroT);
|
|
}
|
|
{
|
|
Info<< nl
|
|
<< " ## A symmTensor with 2 repeated eigenvalues: ##"
|
|
<< nl;
|
|
const symmTensor T
|
|
(
|
|
1.0, 0.0, Foam::sqrt(2.0),
|
|
2.0, 0.0,
|
|
0.0
|
|
);
|
|
test_eigen_funcs(T);
|
|
}
|
|
{
|
|
Info<< nl
|
|
<< " ## A symmTensor with 3 repeated eigenvalues: ##"
|
|
<< nl;
|
|
const symmTensor T
|
|
(
|
|
0.023215, -5.0739e-09, -7.0012e-09,
|
|
0.023215, -8.148e-10,
|
|
0.023215
|
|
);
|
|
test_eigen_funcs(T);
|
|
}
|
|
{
|
|
Info<< nl << " ## A stiff symmTensor: ##" << nl;
|
|
const symmTensor stiff
|
|
(
|
|
pow(10.0, 10), pow(10.0, 8), pow(10.0, -8),
|
|
pow(10.0, -8), pow(10.0, 8),
|
|
pow(10.0, 7)
|
|
);
|
|
test_eigen_funcs(stiff);
|
|
}
|
|
{
|
|
Info<< nl
|
|
<< " ## Random symmTensors with tiny off-diag elements: ##"
|
|
<< nl;
|
|
|
|
const List<scalar> epsilons
|
|
({
|
|
0, SMALL, Foam::sqrt(SMALL), sqr(SMALL), Foam::cbrt(SMALL),
|
|
-SMALL, -Foam::sqrt(SMALL), -sqr(SMALL), -Foam::cbrt(SMALL)
|
|
});
|
|
|
|
for (label i = 0; i < numberOfTests; ++i)
|
|
{
|
|
for (const auto& eps : epsilons)
|
|
{
|
|
{
|
|
symmTensor T(makeRandomContainer(rndGen));
|
|
T.xy() = eps*rndGen.GaussNormal<scalar>();
|
|
test_eigen_funcs(T);
|
|
}
|
|
{
|
|
symmTensor T(makeRandomContainer(rndGen));
|
|
T.xz() = eps*rndGen.GaussNormal<scalar>();
|
|
test_eigen_funcs(T);
|
|
}
|
|
{
|
|
symmTensor T(makeRandomContainer(rndGen));
|
|
T.yz() = eps*rndGen.GaussNormal<scalar>();
|
|
test_eigen_funcs(T);
|
|
}
|
|
{
|
|
symmTensor T(makeRandomContainer(rndGen));
|
|
T.xy() = eps*rndGen.GaussNormal<scalar>();
|
|
T.xz() = eps*rndGen.GaussNormal<scalar>();
|
|
test_eigen_funcs(T);
|
|
}
|
|
{
|
|
symmTensor T(makeRandomContainer(rndGen));
|
|
T.xy() = eps*rndGen.GaussNormal<scalar>();
|
|
T.yz() = eps*rndGen.GaussNormal<scalar>();
|
|
test_eigen_funcs(T);
|
|
}
|
|
{
|
|
symmTensor T(makeRandomContainer(rndGen));
|
|
T.xz() = eps*rndGen.GaussNormal<scalar>();
|
|
T.yz() = eps*rndGen.GaussNormal<scalar>();
|
|
test_eigen_funcs(T);
|
|
}
|
|
{
|
|
symmTensor T(makeRandomContainer(rndGen));
|
|
T.xy() = eps*rndGen.GaussNormal<scalar>();
|
|
T.xz() = eps*rndGen.GaussNormal<scalar>();
|
|
T.yz() = eps*rndGen.GaussNormal<scalar>();
|
|
test_eigen_funcs(T);
|
|
}
|
|
{
|
|
symmTensor T(makeRandomContainer(rndGen));
|
|
T.xy() = eps;
|
|
T.xz() = eps;
|
|
T.yz() = eps;
|
|
test_eigen_funcs(T);
|
|
}
|
|
{
|
|
symmTensor T(makeRandomContainer(rndGen));
|
|
T.xy() = eps;
|
|
T.xz() = eps;
|
|
T.yz() = eps;
|
|
T.zz() = eps;
|
|
test_eigen_funcs(T);
|
|
}
|
|
{
|
|
symmTensor T(makeRandomContainer(rndGen));
|
|
T.xy() = 0;
|
|
T.xz() = eps*rndGen.GaussNormal<scalar>();
|
|
T.yz() = 0;
|
|
test_eigen_funcs(T);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#if 0
|
|
// Numerical diagonalisation of 2x2 or 3x3 matrices with analytic methods
|
|
// are, like the methods currently being used in OpenFOAM, inherently error
|
|
// prone. Despite its speed, the analytic methods may becomes inaccurate or
|
|
// may even fail completely if the matrix entries differ greatly in
|
|
// magnitude, particularly with large off-diagonal elements.
|
|
// The remedy is to use iterative or hybrid analytic/iterative methods
|
|
// such as published here (for 3x3/2x2 matrices):
|
|
// (Kopp, 2008) arXiv.org: physics/0610206
|
|
// mpi-hd.mpg.de/personalhomes/globes/3x3/index.html
|
|
{
|
|
Info<< nl << " ## symmTensors consisting machine epsilons: ##" << nl;
|
|
Info<< " # floatScalar" << nl;
|
|
const List<floatScalar> floatEpsilons
|
|
({
|
|
floatScalarGREAT, floatScalarVGREAT, floatScalarROOTVGREAT,
|
|
floatScalarSMALL, floatScalarVSMALL, floatScalarROOTVSMALL,
|
|
Foam::sqrt(floatScalarSMALL), 0
|
|
});
|
|
|
|
for (const auto& eps : floatEpsilons)
|
|
{
|
|
const symmTensor T(makeContainer(eps));
|
|
test_eigen_funcs(T);
|
|
}
|
|
|
|
Info<< " # doubleScalar" << nl;
|
|
const List<doubleScalar> doubleEpsilons
|
|
({
|
|
doubleScalarGREAT, doubleScalarROOTVGREAT, // doubleVGREAT fails
|
|
doubleScalarSMALL, doubleScalarVSMALL, doubleScalarROOTVSMALL,
|
|
Foam::sqrt(doubleScalarSMALL), 0
|
|
});
|
|
|
|
for (const auto& eps : doubleEpsilons)
|
|
{
|
|
const symmTensor T(makeContainer(eps));
|
|
test_eigen_funcs(T);
|
|
}
|
|
}
|
|
{
|
|
Info<< nl
|
|
<< " ## Random symmTensors with machine eps off-diag elmes: ##"
|
|
<< nl;
|
|
|
|
const List<floatScalar> floatEpsilons
|
|
({
|
|
floatScalarGREAT, floatScalarVGREAT, floatScalarROOTVGREAT,
|
|
floatScalarSMALL, floatScalarVSMALL, floatScalarROOTVSMALL
|
|
});
|
|
|
|
const List<doubleScalar> doubleEpsilons
|
|
({
|
|
doubleScalarGREAT, doubleScalarVGREAT, doubleScalarROOTVGREAT,
|
|
doubleScalarSMALL, doubleScalarVSMALL, doubleScalarROOTVSMALL
|
|
});
|
|
|
|
for (label i = 0; i < numberOfTests; ++i)
|
|
{
|
|
symmTensor T(makeRandomContainer(rndGen));
|
|
|
|
for (const auto& eps : floatEpsilons)
|
|
{
|
|
T.xy() = eps;
|
|
T.xz() = eps;
|
|
T.yz() = eps;
|
|
test_eigen_funcs(T);
|
|
}
|
|
|
|
for (const auto& eps : doubleEpsilons)
|
|
{
|
|
T.xy() = eps;
|
|
T.xz() = eps;
|
|
T.yz() = eps;
|
|
test_eigen_funcs(T);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
if (nFail_)
|
|
{
|
|
Info<< nl << " #### "
|
|
<< "Failed in " << nFail_ << " tests "
|
|
<< "out of total " << nTest_ << " tests "
|
|
<< "####\n" << endl;
|
|
return 1;
|
|
}
|
|
|
|
Info<< nl << " #### Passed all " << nTest_ <<" tests ####\n" << endl;
|
|
return 0;
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|