openfoam/applications/test/SymmTensor/Test-SymmTensor.C
Mark Olesen eba7a485ba ENH: quaternion ROLL_PITCH_YAW and YAW_PITCH_ROLL aliases/lookups
COMP: define labelSphericalTensor::I

- remove spurious 'labelI' global constant (labelSphericalTensor::I)

STYLE: replace use of deprecated Tensor vectorComponent

STYLE: avoid bit-wise assignment of bool (VectorSpace compare ops)
2022-06-02 11:14:10 +02:00

859 lines
24 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2020-2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
Test-SymmTensor
Description
Tests for \c SymmTensor constructors, member functions and operators
using \c floatScalar, \c doubleScalar, and \c complex base types.
Eigen decomposition tests for \c symmTensor, i.e. SymmTensor<scalar>.
Cross-checks were obtained from 'NumPy 1.15.1' and 'SciPy 1.1.0' if no
theoretical cross-check exists (like eigendecomposition relations), and
were hard-coded for elementwise comparisons.
For \c complex base type, the cross-checks do only involve zero imag part.
\*---------------------------------------------------------------------------*/
#include "symmTensor.H"
#include "transform.H"
#include "Random.H"
#include "scalar.H"
#include "complex.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Total number of unit tests
unsigned nTest_ = 0;
// Total number of failed unit tests
unsigned nFail_ = 0;
// Create a random symmTensor
symmTensor makeRandomContainer(Random& rnd)
{
symmTensor T(Zero);
std::generate(T.begin(), T.end(), [&]{ return rnd.GaussNormal<scalar>(); });
return T;
}
// Create a symmTensor based on a given value
template<class Type>
typename std::enable_if
<
std::is_same<floatScalar, Type>::value ||
std::is_same<doubleScalar, Type>::value,
symmTensor
>::type makeContainer(const Type val)
{
symmTensor T(Zero);
std::fill(T.begin(), T.end(), val);
return T;
}
// Compare two floating point types, and print output.
// Do ++nFail_ if values of two objects are not equal within a given tolerance.
// The function is converted from PEP-485.
template<class Type>
typename std::enable_if<pTraits<Type>::rank == 0, void>::type
cmp
(
const word& msg,
const Type& x,
const Type& y,
const scalar absTol = 0, //<! useful for cmps near zero
const scalar relTol = 1e-8 //<! are values the same within 8 decimals
)
{
Info<< msg << x << "?=" << y << endl;
unsigned nFail = 0;
if (max(absTol, relTol*max(mag(x), mag(y))) < mag(x - y))
{
++nFail;
}
if (nFail)
{
Info<< nl
<< " #### Fail in " << nFail << " comps ####" << nl << endl;
++nFail_;
}
++nTest_;
}
// Compare two containers elementwise, and print output.
// Do ++nFail_ if two components are not equal within a given tolerance.
// The function is converted from PEP-485
template<class Type>
typename std::enable_if<pTraits<Type>::rank != 0, void>::type
cmp
(
const word& msg,
const Type& x,
const Type& y,
const scalar absTol = 0,
const scalar relTol = 1e-8
)
{
Info<< msg << x << "?=" << y << endl;
unsigned nFail = 0;
for (direction i = 0; i < pTraits<Type>::nComponents; ++i)
{
if (max(absTol, relTol*max(mag(x[i]), mag(y[i]))) < mag(x[i] - y[i]))
{
++nFail;
}
}
if (nFail)
{
Info<< nl
<< " #### Fail in " << nFail << " comps ####" << nl << endl;
++nFail_;
}
++nTest_;
}
// Create each constructor of SymmTensor<Type>, and print output
template<class Type>
void test_constructors(Type)
{
{
Info<< "# Construct initialized to zero:" << nl;
const SymmTensor<Type> sT(Zero);
Info<< sT << endl;
}
{
Info<< "# Construct given VectorSpace of the same rank:" << nl;
const VectorSpace<SymmTensor<Type>, Type, 6> M(Zero);
const SymmTensor<Type> sT(M);
Info<< sT << endl;
}
{
Info<< "# Construct given SphericalTensor:" << nl;
const SphericalTensor<Type> Sp(Type(5));
const SymmTensor<Type> sT(Sp);
Info<< sT << endl;
}
{
Info<< "# Construct given the six components:" << nl;
const SymmTensor<Type> sT
(
Type(1), Type(2), Type(-3),
Type(5), Type(-6),
Type(-9)
);
Info<< sT << endl;
}
{
Info<< "# Copy construct:" << nl;
const SymmTensor<Type> sT(Zero);
const SymmTensor<Type> copysT(sT);
Info<< sT << tab << copysT << endl;
}
}
// Execute each member function of SymmTensor<Type>, and print output
template<class Type>
void test_member_funcs(Type)
{
SymmTensor<Type> sT
(
Type(1), Type(2), Type(-3),
Type(5), Type(-6),
Type(-9)
);
const SymmTensor<Type> csT
(
Type(1), Type(2), Type(-3),
Type(5), Type(-6),
Type(-9)
);
Info<< "# Operand: " << nl
<< " SymmTensor = " << sT << endl;
{
Info<< "# Component access:" << nl;
SymmTensor<Type> cpsT
(
sT.xx(), sT.xy(), sT.xz(),
sT.yy(), sT.yz(),
sT.zz()
);
cmp(" 'SymmTensor' access:", sT, cpsT);
cmp(" xy()=yx():", sT.xy(), sT.yx());
cmp(" xz()=zx():", sT.xz(), sT.zx());
cmp(" yz()=zy():", sT.yz(), sT.zy());
const SymmTensor<Type> cpcsT
(
csT.xx(), csT.xy(), csT.xz(),
csT.yy(), csT.yz(),
csT.zz()
);
cmp(" 'const SymmTensor' access:", csT, cpcsT);
cmp(" xy()=yx():", sT.xy(), sT.yx());
cmp(" xz()=zx():", sT.xz(), sT.zx());
cmp(" yz()=zy():", sT.yz(), sT.zy());
}
{
Info<< "# Diagonal access:" << nl;
cmp
(
" 'SymmTensor'.diag():",
sT.diag(),
Vector<Type>(Type(1), Type(5), Type(-9))
);
cmp
(
" 'const SymmTensor'.diag():",
csT.diag(),
Vector<Type>(Type(1), Type(5), Type(-9))
);
Info<< "# Diagonal manipulation:" << nl;
sT.diag(Vector<Type>(Type(-10), Type(-15), Type(-20)));
cmp
(
" 'SymmTensor'.diag('Vector'):",
sT.diag(),
Vector<Type>(Type(-10), Type(-15), Type(-20))
);
}
{
Info<< "# Tensor operations:" << nl;
Info<< " Transpose:" << nl;
cmp(" 'SymmTensor'.T():", sT.T(), sT);
}
{
Info<< "# Member operators:" << nl;
sT = SphericalTensor<Type>(Type(5));
cmp
(
" Assign to a SphericalTensor:",
sT,
SymmTensor<Type>
(
Type(5), Zero, Zero,
Type(5), Zero,
Type(5)
)
);
}
}
// Execute each global function of SymmTensor<Type>, and print output
template<class Type>
void test_global_funcs(Type)
{
const SymmTensor<Type> sT
(
Type(1), Type(2), Type(-3),
Type(5), Type(-6),
Type(-9)
);
Info<< "# Operand: " << nl
<< " SymmTensor = " << sT << nl << endl;
cmp(" Trace = ", tr(sT), Type(-3));
cmp(" Spherical part = ", sph(sT), SphericalTensor<Type>(tr(sT)/Type(3)));
cmp(" Symmetric part = ", symm(sT), sT);
cmp(" Twice the symmetric part = ", twoSymm(sT), 2*sT);
cmp
(
" Deviatoric part = ",
dev(sT),
SymmTensor<Type>
(
Type(2), Type(2), Type(-3),
Type(6), Type(-6),
Type(-8)
)
);
cmp(" Two-third deviatoric part = ", dev2(sT), sT - 2*sph(sT));
cmp(" Determinant = ", det(sT), Type(-17.999999999999996));
cmp
(
" Cofactor tensor = ",
cof(sT),
SymmTensor<Type>
(
Type(-81), Type(36), Type(3),
Type(-18), Type(0),
Type(1)
)
);
cmp
(
" Inverse = ",
inv(sT, det(sT)),
SymmTensor<Type>
(
Type(4.5), Type(-2), Type(-0.16666667),
Type(1), Type(0),
Type(-0.05555556)
),
1e-8
);
cmp
(
" Inverse (another) = ",
inv(sT),
SymmTensor<Type>
(
Type(4.5), Type(-2), Type(-0.16666667),
Type(1), Type(0),
Type(-0.05555556)
),
1e-8
);
cmp(" First invariant = ", invariantI(sT), Type(-3));
cmp(" Second invariant = ", invariantII(sT), Type(-98));
cmp(" Third invariant = ", invariantIII(sT), Type(-17.999999999999996));
cmp
(
" Inner-product with self = ",
innerSqr(sT),
SymmTensor<Type>
(
Type(14), Type(30), Type(12),
Type(65), Type(18),
Type(126)
)
);
cmp(" Square of Frobenius norm = ", magSqr(sT), Type(205));
}
// Execute each global operator of SymmTensor<Type>, and print output
template<class Type>
void test_global_opers(Type)
{
const Tensor<Type> T
(
Type(1), Type(2), Type(-3),
Type(4), Type(5), Type(-6),
Type(7), Type(8), Type(-9)
);
const SymmTensor<Type> sT
(
Type(1), Type(2), Type(-3),
Type(5), Type(-6),
Type(-9)
);
const SphericalTensor<Type> spT(Type(1));
const Vector<Type> v(Type(3), Type(2), Type(1));
const Type x(4);
Info<< "# Operands:" << nl
<< " Tensor = " << T << nl
<< " SymmTensor = " << sT << nl
<< " SphericalTensor = " << spT << nl
<< " Vector = " << v << nl
<< " Type = " << x << endl;
cmp
(
" Sum of SpTensor-SymmTensor = ",
(spT + sT),
SymmTensor<Type>
(
Type(2), Type(2), Type(-3),
Type(6), Type(-6),
Type(-8)
)
);
cmp
(
" Sum of SymmTensor-SpTensor = ",
(sT + spT),
SymmTensor<Type>
(
Type(2), Type(2), Type(-3),
Type(6), Type(-6),
Type(-8)
)
);
cmp
(
" Subtract SymmTensor from SpTensor = ",
(spT - sT),
SymmTensor<Type>
(
Type(0), Type(-2), Type(3),
Type(-4), Type(6),
Type(10)
)
);
cmp
(
" Subtract SpTensor from SymmTensor = ",
(sT - spT),
SymmTensor<Type>
(
Type(0), Type(2), Type(-3),
Type(4), Type(-6),
Type(-10)
)
);
cmp
(
" Hodge dual of a SymmTensor",
*sT,
Vector<Type>(Type(-6), Type(3), Type(2))
);
cmp
(
" Division of a SymmTensor by a Type",
sT/x,
SymmTensor<Type>
(
Type(0.25), Type(0.5), Type(-0.75),
Type(1.25), Type(-1.5),
Type(-2.25)
)
);
cmp
(
" Inner-product of SymmTensor-SymmTensor = ",
(sT & sT),
Tensor<Type>
(
Type(14), Type(30), Type(12),
Type(30), Type(65), Type(18),
Type(12), Type(18), Type(126)
)
);
cmp
(
" Inner-product of SpTensor-SymmTensor = ",
(spT & sT),
SymmTensor<Type>
(
Type(1), Type(2), Type(-3),
Type(5), Type(-6),
Type(-9)
)
);
cmp
(
" Inner-product of SymmTensor-SpTensor = ",
(sT & spT),
SymmTensor<Type>
(
Type(1), Type(2), Type(-3),
Type(5), Type(-6),
Type(-9)
)
);
cmp
(
" Inner-product of SymmTensor-Vector = ",
(sT & v),
Vector<Type>(Type(4), Type(10), Type(-30)) // Column-vector
);
cmp
(
" Inner-product of Vector-SymmTensor = ",
(v & sT),
Vector<Type>(Type(4), Type(10), Type(-30)) // Row-vector
);
cmp(" D-inner-product of SymmTensor-SymmTensor = ", (sT && sT), Type(205));
cmp(" D-inner-product of SymmTensor-SpTensor = ", (sT && spT), Type(-3));
cmp(" D-inner-product of SpTensor-SymmTensor = ", (spT && sT), Type(-3));
}
// Return false if given eigenvalues fail to satisy eigenvalue relations
// Relations: (Beauregard & Fraleigh (1973), ISBN 0-395-14017-X, p. 307)
void test_eigenvalues(const symmTensor& T, const vector& EVals)
{
{
const scalar determinant = det(T);
const scalar EValsProd = EVals.x()*EVals.y()*EVals.z();
cmp("# Product of eigenvalues = det(T):", EValsProd, determinant, 1e-6);
}
{
const scalar trace = tr(T);
scalar EValsSum = 0.0;
for (const auto& val : EVals)
{
EValsSum += val;
}
cmp("# Sum of eigenvalues = trace(T):", EValsSum, trace);
}
}
// Return false if a given eigenvalue-eigenvector pair
// fails to satisfy the characteristic equation
void test_characteristic_equation
(
const symmTensor& T,
const vector& EVals,
const tensor& EVecs
)
{
Info<< "# Characteristic equation:" << nl;
for (direction dir = 0; dir < pTraits<vector>::nComponents; ++dir)
{
Info<< "EVal = " << EVals[dir] << nl
<< "EVec = " << EVecs.row(dir) << endl;
const vector leftSide(T & EVecs.row(dir));
const vector rightSide(EVals[dir]*EVecs.row(dir));
const vector X(leftSide - rightSide);
for (const auto x : X)
{
cmp(" (T & EVec - EVal*EVec) = 0:", x, 0.0, 1e-5);
}
}
}
// Return false if the eigen functions fail to satisfy relations
void test_eigen_funcs(const symmTensor& T)
{
Info<< "# Operand:" << nl
<< " symmTensor = " << T << nl;
Info<< "# Return eigenvalues of a given symmTensor:" << nl;
const vector EVals(eigenValues(T));
Info<< EVals << endl;
test_eigenvalues(T, EVals);
Info<< "# Return eigenvectors of a given symmTensor corresponding to"
<< " given eigenvalues:" << nl;
const tensor EVecs0(eigenVectors(T, EVals));
Info<< EVecs0 << endl;
test_characteristic_equation(T, EVals, EVecs0);
Info<< "# Return eigenvectors of a given symmTensor by computing"
<< " the eigenvalues of the symmTensor in the background:" << nl;
const tensor EVecs1(eigenVectors(T));
Info<< EVecs1 << endl;
}
// Do compile-time recursion over the given types
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I == sizeof...(Tp), void>::type
run_tests(const std::tuple<Tp...>& types, const List<word>& typeID){}
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I < sizeof...(Tp), void>::type
run_tests(const std::tuple<Tp...>& types, const List<word>& typeID)
{
Info<< nl << " ## Test constructors: "<< typeID[I] <<" ##" << nl;
test_constructors(std::get<I>(types));
Info<< nl << " ## Test member functions: "<< typeID[I] <<" ##" << nl;
test_member_funcs(std::get<I>(types));
Info<< nl << " ## Test global functions: "<< typeID[I] << " ##" << nl;
test_global_funcs(std::get<I>(types));
Info<< nl << " ## Test global operators: "<< typeID[I] <<" ##" << nl;
test_global_opers(std::get<I>(types));
run_tests<I + 1, Tp...>(types, typeID);
}
// * * * * * * * * * * * * * * * Main Program * * * * * * * * * * * * * * * //
int main()
{
const std::tuple<floatScalar, doubleScalar, complex> types
(
std::make_tuple(Zero, Zero, Zero)
);
const List<word> typeID
({
"SymmTensor<floatScalar>",
"SymmTensor<doubleScalar>",
"SymmTensor<complex>"
});
run_tests(types, typeID);
Info<< nl << " ## Test symmTensor eigen functions: ##" << nl;
const label numberOfTests = 10000;
Random rndGen(1234);
for (label i = 0; i < numberOfTests; ++i)
{
const symmTensor T(makeRandomContainer(rndGen));
test_eigen_funcs(T);
}
{
Info<< nl << " ## A zero symmTensor: ##"<< nl;
const symmTensor zeroT(Zero);
test_eigen_funcs(zeroT);
}
{
Info<< nl
<< " ## A symmTensor with 2 repeated eigenvalues: ##"
<< nl;
const symmTensor T
(
1.0, 0.0, Foam::sqrt(2.0),
2.0, 0.0,
0.0
);
test_eigen_funcs(T);
}
{
Info<< nl
<< " ## A symmTensor with 3 repeated eigenvalues: ##"
<< nl;
const symmTensor T
(
0.023215, -5.0739e-09, -7.0012e-09,
0.023215, -8.148e-10,
0.023215
);
test_eigen_funcs(T);
}
{
Info<< nl << " ## A stiff symmTensor: ##" << nl;
const symmTensor stiff
(
pow(10.0, 10), pow(10.0, 8), pow(10.0, -8),
pow(10.0, -8), pow(10.0, 8),
pow(10.0, 7)
);
test_eigen_funcs(stiff);
}
{
Info<< nl
<< " ## Random symmTensors with tiny off-diag elements: ##"
<< nl;
const List<scalar> epsilons
({
0, SMALL, Foam::sqrt(SMALL), sqr(SMALL), Foam::cbrt(SMALL),
-SMALL, -Foam::sqrt(SMALL), -sqr(SMALL), -Foam::cbrt(SMALL)
});
for (label i = 0; i < numberOfTests; ++i)
{
for (const auto& eps : epsilons)
{
{
symmTensor T(makeRandomContainer(rndGen));
T.xy() = eps*rndGen.GaussNormal<scalar>();
test_eigen_funcs(T);
}
{
symmTensor T(makeRandomContainer(rndGen));
T.xz() = eps*rndGen.GaussNormal<scalar>();
test_eigen_funcs(T);
}
{
symmTensor T(makeRandomContainer(rndGen));
T.yz() = eps*rndGen.GaussNormal<scalar>();
test_eigen_funcs(T);
}
{
symmTensor T(makeRandomContainer(rndGen));
T.xy() = eps*rndGen.GaussNormal<scalar>();
T.xz() = eps*rndGen.GaussNormal<scalar>();
test_eigen_funcs(T);
}
{
symmTensor T(makeRandomContainer(rndGen));
T.xy() = eps*rndGen.GaussNormal<scalar>();
T.yz() = eps*rndGen.GaussNormal<scalar>();
test_eigen_funcs(T);
}
{
symmTensor T(makeRandomContainer(rndGen));
T.xz() = eps*rndGen.GaussNormal<scalar>();
T.yz() = eps*rndGen.GaussNormal<scalar>();
test_eigen_funcs(T);
}
{
symmTensor T(makeRandomContainer(rndGen));
T.xy() = eps*rndGen.GaussNormal<scalar>();
T.xz() = eps*rndGen.GaussNormal<scalar>();
T.yz() = eps*rndGen.GaussNormal<scalar>();
test_eigen_funcs(T);
}
{
symmTensor T(makeRandomContainer(rndGen));
T.xy() = eps;
T.xz() = eps;
T.yz() = eps;
test_eigen_funcs(T);
}
{
symmTensor T(makeRandomContainer(rndGen));
T.xy() = eps;
T.xz() = eps;
T.yz() = eps;
T.zz() = eps;
test_eigen_funcs(T);
}
{
symmTensor T(makeRandomContainer(rndGen));
T.xy() = 0;
T.xz() = eps*rndGen.GaussNormal<scalar>();
T.yz() = 0;
test_eigen_funcs(T);
}
}
}
}
#if 0
// Numerical diagonalisation of 2x2 or 3x3 matrices with analytic methods
// are, like the methods currently being used in OpenFOAM, inherently error
// prone. Despite its speed, the analytic methods may becomes inaccurate or
// may even fail completely if the matrix entries differ greatly in
// magnitude, particularly with large off-diagonal elements.
// The remedy is to use iterative or hybrid analytic/iterative methods
// such as published here (for 3x3/2x2 matrices):
// (Kopp, 2008) arXiv.org: physics/0610206
// mpi-hd.mpg.de/personalhomes/globes/3x3/index.html
{
Info<< nl << " ## symmTensors consisting machine epsilons: ##" << nl;
Info<< " # floatScalar" << nl;
const List<floatScalar> floatEpsilons
({
floatScalarGREAT, floatScalarVGREAT, floatScalarROOTVGREAT,
floatScalarSMALL, floatScalarVSMALL, floatScalarROOTVSMALL,
Foam::sqrt(floatScalarSMALL), 0
});
for (const auto& eps : floatEpsilons)
{
const symmTensor T(makeContainer(eps));
test_eigen_funcs(T);
}
Info<< " # doubleScalar" << nl;
const List<doubleScalar> doubleEpsilons
({
doubleScalarGREAT, doubleScalarROOTVGREAT, // doubleVGREAT fails
doubleScalarSMALL, doubleScalarVSMALL, doubleScalarROOTVSMALL,
Foam::sqrt(doubleScalarSMALL), 0
});
for (const auto& eps : doubleEpsilons)
{
const symmTensor T(makeContainer(eps));
test_eigen_funcs(T);
}
}
{
Info<< nl
<< " ## Random symmTensors with machine eps off-diag elmes: ##"
<< nl;
const List<floatScalar> floatEpsilons
({
floatScalarGREAT, floatScalarVGREAT, floatScalarROOTVGREAT,
floatScalarSMALL, floatScalarVSMALL, floatScalarROOTVSMALL
});
const List<doubleScalar> doubleEpsilons
({
doubleScalarGREAT, doubleScalarVGREAT, doubleScalarROOTVGREAT,
doubleScalarSMALL, doubleScalarVSMALL, doubleScalarROOTVSMALL
});
for (label i = 0; i < numberOfTests; ++i)
{
symmTensor T(makeRandomContainer(rndGen));
for (const auto& eps : floatEpsilons)
{
T.xy() = eps;
T.xz() = eps;
T.yz() = eps;
test_eigen_funcs(T);
}
for (const auto& eps : doubleEpsilons)
{
T.xy() = eps;
T.xz() = eps;
T.yz() = eps;
test_eigen_funcs(T);
}
}
}
#endif
if (nFail_)
{
Info<< nl << " #### "
<< "Failed in " << nFail_ << " tests "
<< "out of total " << nTest_ << " tests "
<< "####\n" << endl;
return 1;
}
Info<< nl << " #### Passed all " << nTest_ <<" tests ####\n" << endl;
return 0;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //