OLD: pEqn.solve(mesh.solver(p.select(piso.finalInnerIter()))); pEqn.solve(mesh.solver("Yi")); NEW: pEqn.solve(p.select(piso.finalInnerIter())); pEqn.solve("Yi");
121 lines
2.5 KiB
C
121 lines
2.5 KiB
C
if (!pimple.SIMPLErho())
|
|
{
|
|
rho = thermo.rho();
|
|
}
|
|
|
|
// Thermodynamic density needs to be updated by psi*d(p) after the
|
|
// pressure solution
|
|
const volScalarField psip0(psi*p);
|
|
|
|
volScalarField rAU(1.0/UEqn.A());
|
|
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
|
|
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
|
|
|
|
if (pimple.nCorrPISO() <= 1)
|
|
{
|
|
tUEqn.clear();
|
|
}
|
|
|
|
surfaceScalarField phiHbyA
|
|
(
|
|
"phiHbyA",
|
|
fvc::interpolate(rho)*fvc::flux(HbyA)
|
|
+ MRF.zeroFilter(rhorAUf*fvc::ddtCorr(rho, U, phi, rhoUf))
|
|
);
|
|
|
|
fvc::makeRelative(phiHbyA, rho, U);
|
|
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
|
|
|
|
// Update the pressure BCs to ensure flux consistency
|
|
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
|
|
|
|
if (pimple.transonic())
|
|
{
|
|
surfaceScalarField phid
|
|
(
|
|
"phid",
|
|
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
|
|
);
|
|
|
|
phiHbyA -= fvc::interpolate(psi*p)*phiHbyA/fvc::interpolate(rho);
|
|
|
|
fvScalarMatrix pDDtEqn
|
|
(
|
|
fvc::ddt(rho) + psi*correction(fvm::ddt(p))
|
|
+ fvc::div(phiHbyA) + fvm::div(phid, p)
|
|
==
|
|
fvOptions(psi, p, rho.name())
|
|
);
|
|
|
|
while (pimple.correctNonOrthogonal())
|
|
{
|
|
fvScalarMatrix pEqn(pDDtEqn - fvm::laplacian(rhorAUf, p));
|
|
|
|
// Relax the pressure equation to ensure diagonal-dominance
|
|
pEqn.relax();
|
|
|
|
pEqn.solve(p.select(pimple.finalInnerIter()));
|
|
|
|
if (pimple.finalNonOrthogonalIter())
|
|
{
|
|
phi = phiHbyA + pEqn.flux();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
fvScalarMatrix pDDtEqn
|
|
(
|
|
fvc::ddt(rho) + psi*correction(fvm::ddt(p))
|
|
+ fvc::div(phiHbyA)
|
|
==
|
|
fvOptions(psi, p, rho.name())
|
|
);
|
|
|
|
while (pimple.correctNonOrthogonal())
|
|
{
|
|
fvScalarMatrix pEqn(pDDtEqn - fvm::laplacian(rhorAUf, p));
|
|
|
|
pEqn.solve(p.select(pimple.finalInnerIter()));
|
|
|
|
if (pimple.finalNonOrthogonalIter())
|
|
{
|
|
phi = phiHbyA + pEqn.flux();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Explicitly relax pressure for momentum corrector
|
|
p.relax();
|
|
|
|
U = HbyA - rAU*fvc::grad(p);
|
|
U.correctBoundaryConditions();
|
|
fvOptions.correct(U);
|
|
K = 0.5*magSqr(U);
|
|
|
|
if (pressureControl.limit(p))
|
|
{
|
|
p.correctBoundaryConditions();
|
|
}
|
|
|
|
thermo.correctRho(psi*p - psip0, rhoMin, rhoMax) ;
|
|
|
|
#include "rhoEqn.H"
|
|
#include "compressibleContinuityErrs.H"
|
|
|
|
rho = thermo.rho();
|
|
|
|
// Correct rhoUf if the mesh is moving
|
|
fvc::correctRhoUf(rhoUf, rho, U, phi);
|
|
|
|
if (thermo.dpdt())
|
|
{
|
|
dpdt = fvc::ddt(p);
|
|
|
|
if (mesh.moving())
|
|
{
|
|
dpdt -= fvc::div(fvc::meshPhi(rho, U), p);
|
|
}
|
|
}
|