OLD: pEqn.solve(mesh.solver(p.select(piso.finalInnerIter()))); pEqn.solve(mesh.solver("Yi")); NEW: pEqn.solve(p.select(piso.finalInnerIter())); pEqn.solve("Yi");
123 lines
2.7 KiB
C
123 lines
2.7 KiB
C
bool closedVolume = p_rgh.needReference();
|
|
dimensionedScalar compressibility = fvc::domainIntegrate(psi);
|
|
bool compressible = (compressibility.value() > SMALL);
|
|
|
|
rho = thermo.rho();
|
|
|
|
// Thermodynamic density needs to be updated by psi*d(p) after the
|
|
// pressure solution
|
|
const volScalarField psip0(psi*p);
|
|
|
|
volScalarField rAU("rAU", 1.0/UEqn.A());
|
|
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
|
|
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));
|
|
|
|
surfaceScalarField phig(-rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf());
|
|
|
|
surfaceScalarField phiHbyA
|
|
(
|
|
"phiHbyA",
|
|
(
|
|
fvc::flux(rho*HbyA)
|
|
+ MRF.zeroFilter(rhorAUf*fvc::ddtCorr(rho, U, phi))
|
|
)
|
|
+ phig
|
|
);
|
|
|
|
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
|
|
|
|
// Update the pressure BCs to ensure flux consistency
|
|
constrainPressure(p_rgh, rho, U, phiHbyA, rhorAUf, MRF);
|
|
|
|
{
|
|
fvScalarMatrix p_rghDDtEqn
|
|
(
|
|
fvc::ddt(rho) + psi*correction(fvm::ddt(p_rgh))
|
|
+ fvc::div(phiHbyA)
|
|
);
|
|
|
|
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
|
{
|
|
fvScalarMatrix p_rghEqn
|
|
(
|
|
p_rghDDtEqn
|
|
- fvm::laplacian(rhorAUf, p_rgh)
|
|
);
|
|
|
|
p_rghEqn.setReference
|
|
(
|
|
pRefCell,
|
|
compressible ? getRefCellValue(p_rgh, pRefCell) : pRefValue
|
|
);
|
|
|
|
p_rghEqn.solve
|
|
(
|
|
p_rgh.select
|
|
(
|
|
(
|
|
oCorr == nOuterCorr-1
|
|
&& corr == nCorr-1
|
|
&& nonOrth == nNonOrthCorr
|
|
)
|
|
)
|
|
);
|
|
|
|
if (nonOrth == nNonOrthCorr)
|
|
{
|
|
phi = phiHbyA + p_rghEqn.flux();
|
|
|
|
p_rgh.relax();
|
|
|
|
U = HbyA
|
|
+ rAU*fvc::reconstruct((phig + p_rghEqn.flux())/rhorAUf);
|
|
U.correctBoundaryConditions();
|
|
fvOptions.correct(U);
|
|
K = 0.5*magSqr(U);
|
|
}
|
|
}
|
|
|
|
p = p_rgh + rho*gh;
|
|
|
|
}
|
|
|
|
pressureControl.limit(p);
|
|
|
|
// For closed-volume cases adjust the pressure and density levels
|
|
// to obey overall mass continuity
|
|
if (closedVolume)
|
|
{
|
|
if (!compressible)
|
|
{
|
|
p += dimensionedScalar
|
|
(
|
|
"p",
|
|
p.dimensions(),
|
|
pRefValue - getRefCellValue(p, pRefCell)
|
|
);
|
|
}
|
|
else
|
|
{
|
|
p += (initialMass - fvc::domainIntegrate(psi*p))
|
|
/compressibility;
|
|
thermo.correctRho(psi*p - psip0, rhoMin, rhoMax);
|
|
rho = thermo.rho();
|
|
p_rgh = p - rho*gh;
|
|
p_rgh.correctBoundaryConditions();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
thermo.correctRho(psi*p - psip0, rhoMin, rhoMax);
|
|
}
|
|
|
|
#include "rhoEqn.H"
|
|
#include "compressibleContinuityErrors.H"
|
|
|
|
rho = thermo.rho();
|
|
|
|
// Update pressure time derivative if needed
|
|
if (thermo.dpdt())
|
|
{
|
|
dpdt = fvc::ddt(p);
|
|
}
|