openfoam/applications/utilities/surface/surfaceFeatureExtract/surfaceFeatureExtract.C
2011-07-22 14:12:08 +01:00

885 lines
23 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2004-2011 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
surfaceFeatureExtract
Description
Extracts and writes surface features to file
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "triSurface.H"
#include "surfaceFeatures.H"
#include "featureEdgeMesh.H"
#include "extendedFeatureEdgeMesh.H"
#include "treeBoundBox.H"
#include "meshTools.H"
#include "OFstream.H"
#include "triSurfaceMesh.H"
#include "vtkSurfaceWriter.H"
#include "triSurfaceFields.H"
#include "indexedOctree.H"
#include "treeDataEdge.H"
#include "unitConversion.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void dumpBox(const treeBoundBox& bb, const fileName& fName)
{
OFstream str(fName);
Info<< "Dumping bounding box " << bb << " as lines to obj file "
<< str.name() << endl;
pointField boxPoints(bb.points());
forAll(boxPoints, i)
{
meshTools::writeOBJ(str, boxPoints[i]);
}
forAll(treeBoundBox::edges, i)
{
const edge& e = treeBoundBox::edges[i];
str<< "l " << e[0]+1 << ' ' << e[1]+1 << nl;
}
}
// Deletes all edges inside/outside bounding box from set.
void deleteBox
(
const triSurface& surf,
const treeBoundBox& bb,
const bool removeInside,
List<surfaceFeatures::edgeStatus>& edgeStat
)
{
forAll(edgeStat, edgeI)
{
const point eMid = surf.edges()[edgeI].centre(surf.localPoints());
if (removeInside ? bb.contains(eMid) : !bb.contains(eMid))
{
edgeStat[edgeI] = surfaceFeatures::NONE;
}
}
}
void drawHitProblem
(
label fI,
const triSurface& surf,
const pointField& start,
const pointField& faceCentres,
const pointField& end,
const List<pointIndexHit>& hitInfo
)
{
Info<< nl << "# findLineAll did not hit its own face."
<< nl << "# fI " << fI
<< nl << "# start " << start[fI]
<< nl << "# f centre " << faceCentres[fI]
<< nl << "# end " << end[fI]
<< nl << "# hitInfo " << hitInfo
<< endl;
meshTools::writeOBJ(Info, start[fI]);
meshTools::writeOBJ(Info, faceCentres[fI]);
meshTools::writeOBJ(Info, end[fI]);
Info<< "l 1 2 3" << endl;
meshTools::writeOBJ(Info, surf.points()[surf[fI][0]]);
meshTools::writeOBJ(Info, surf.points()[surf[fI][1]]);
meshTools::writeOBJ(Info, surf.points()[surf[fI][2]]);
Info<< "f 4 5 6" << endl;
forAll(hitInfo, hI)
{
label hFI = hitInfo[hI].index();
meshTools::writeOBJ(Info, surf.points()[surf[hFI][0]]);
meshTools::writeOBJ(Info, surf.points()[surf[hFI][1]]);
meshTools::writeOBJ(Info, surf.points()[surf[hFI][2]]);
Info<< "f "
<< 3*hI + 7 << " "
<< 3*hI + 8 << " "
<< 3*hI + 9
<< endl;
}
}
// Unmark non-manifold edges if individual triangles are not features
void unmarkBaffles
(
const triSurface& surf,
const scalar includedAngle,
List<surfaceFeatures::edgeStatus>& edgeStat
)
{
scalar minCos = Foam::cos(degToRad(180.0 - includedAngle));
const labelListList& edgeFaces = surf.edgeFaces();
forAll(edgeFaces, edgeI)
{
const labelList& eFaces = edgeFaces[edgeI];
if (eFaces.size() > 2)
{
label i0 = eFaces[0];
//const labelledTri& f0 = surf[i0];
const Foam::vector& n0 = surf.faceNormals()[i0];
//Pout<< "edge:" << edgeI << " n0:" << n0 << endl;
bool same = true;
for (label i = 1; i < eFaces.size(); i++)
{
//const labelledTri& f = surf[i];
const Foam::vector& n = surf.faceNormals()[eFaces[i]];
//Pout<< " mag(n&n0): " << mag(n&n0) << endl;
if (mag(n&n0) < minCos)
{
same = false;
break;
}
}
if (same)
{
edgeStat[edgeI] = surfaceFeatures::NONE;
}
}
}
}
// Main program:
int main(int argc, char *argv[])
{
argList::addNote
(
"extract and write surface features to file"
);
argList::noParallel();
argList::validArgs.append("surface");
argList::validArgs.append("output set");
argList::addOption
(
"includedAngle",
"degrees",
"construct feature set from included angle [0..180]"
);
argList::addOption
(
"set",
"name",
"use existing feature set from file"
);
argList::addOption
(
"minLen",
"scalar",
"remove features shorter than the specified cumulative length"
);
argList::addOption
(
"minElem",
"int",
"remove features with fewer than the specified number of edges"
);
argList::addOption
(
"subsetBox",
"((x0 y0 z0)(x1 y1 z1))",
"remove edges outside specified bounding box"
);
argList::addOption
(
"deleteBox",
"((x0 y0 z0)(x1 y1 z1))",
"remove edges within specified bounding box"
);
argList::addBoolOption
(
"writeObj",
"write extendedFeatureEdgeMesh obj files"
);
argList::addBoolOption
(
"writeVTK",
"write extendedFeatureEdgeMesh vtk files"
);
argList::addOption
(
"closeness",
"scalar",
"span to look for surface closeness"
);
argList::addOption
(
"featureProximity",
"scalar",
"distance to look for close features"
);
argList::addBoolOption
(
"writeVTK",
"write surface property VTK files"
);
argList::addBoolOption
(
"manifoldEdgesOnly",
"remove any non-manifold (open or more than two connected faces) edges"
);
# ifdef ENABLE_CURVATURE
argList::addBoolOption
(
"calcCurvature",
"calculate curvature and closeness fields"
);
# endif
# include "setRootCase.H"
# include "createTime.H"
bool writeVTK = args.optionFound("writeVTK");
bool writeObj = args.optionFound("writeObj");
bool curvature = args.optionFound("curvature");
if (curvature && env("FOAM_SIGFPE"))
{
WarningIn(args.executable())
<< "Detected floating point exception trapping (FOAM_SIGFPE)."
<< " This might give" << nl
<< " problems when calculating curvature on straight angles"
<< " (infinite curvature)" << nl
<< " Switch it off in case of problems." << endl;
}
Info<< "Feature line extraction is only valid on closed manifold surfaces."
<< endl;
const fileName surfFileName = args[1];
const fileName outFileName = args[2];
Info<< "Surface : " << surfFileName << nl
<< "Output feature set : " << outFileName << nl
<< endl;
fileName sFeatFileName = surfFileName.lessExt().name();
// Read
// ~~~~
triSurface surf(surfFileName);
Info<< "Statistics:" << endl;
surf.writeStats(Info);
Info<< endl;
faceList faces(surf.size());
forAll(surf, fI)
{
faces[fI] = surf[fI].triFaceFace();
}
// Either construct features from surface&featureangle or read set.
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
surfaceFeatures set(surf);
if (args.optionFound("set"))
{
const fileName setName = args["set"];
Info<< "Reading existing feature set from file " << setName << endl;
set = surfaceFeatures(surf, setName);
}
else if (args.optionFound("includedAngle"))
{
const scalar includedAngle = args.optionRead<scalar>("includedAngle");
Info<< "Constructing feature set from included angle " << includedAngle
<< endl;
set = surfaceFeatures(surf, includedAngle);
// Info<< nl << "Writing initial features" << endl;
// set.write("initial.fSet");
// set.writeObj("initial");
}
else
{
FatalErrorIn(args.executable())
<< "No initial feature set. Provide either one"
<< " of -set (to read existing set)" << nl
<< " or -includedAngle (to new set construct from angle)"
<< exit(FatalError);
}
Info<< nl
<< "Initial feature set:" << nl
<< " feature points : " << set.featurePoints().size() << nl
<< " feature edges : " << set.featureEdges().size() << nl
<< " of which" << nl
<< " region edges : " << set.nRegionEdges() << nl
<< " external edges : " << set.nExternalEdges() << nl
<< " internal edges : " << set.nInternalEdges() << nl
<< endl;
// Trim set
// ~~~~~~~~
scalar minLen = -GREAT;
if (args.optionReadIfPresent("minLen", minLen))
{
Info<< "Removing features of length < " << minLen << endl;
}
label minElem = 0;
if (args.optionReadIfPresent("minElem", minElem))
{
Info<< "Removing features with number of edges < " << minElem << endl;
}
// Trim away small groups of features
if (minElem > 0 || minLen > 0)
{
set.trimFeatures(minLen, minElem);
Info<< endl << "Removed small features" << endl;
}
// Subset
// ~~~~~~
// Convert to marked edges, points
List<surfaceFeatures::edgeStatus> edgeStat(set.toStatus());
if (args.optionFound("subsetBox"))
{
treeBoundBox bb
(
args.optionLookup("subsetBox")()
);
Info<< "Removing all edges outside bb " << bb << endl;
dumpBox(bb, "subsetBox.obj");
deleteBox
(
surf,
bb,
false,
edgeStat
);
}
else if (args.optionFound("deleteBox"))
{
treeBoundBox bb
(
args.optionLookup("deleteBox")()
);
Info<< "Removing all edges inside bb " << bb << endl;
dumpBox(bb, "deleteBox.obj");
deleteBox
(
surf,
bb,
true,
edgeStat
);
}
if (args.optionFound("manifoldEdgesOnly"))
{
Info<< "Removing all non-manifold edges" << endl;
forAll(edgeStat, edgeI)
{
if (surf.edgeFaces()[edgeI].size() != 2)
{
edgeStat[edgeI] = surfaceFeatures::NONE;
}
}
}
surfaceFeatures newSet(surf);
newSet.setFromStatus(edgeStat);
//Info<< endl << "Writing trimmed features to " << outFileName << endl;
//newSet.write(outFileName);
// Info<< endl << "Writing edge objs." << endl;
// newSet.writeObj("final");
Info<< nl
<< "Final feature set:" << nl
<< " feature points : " << newSet.featurePoints().size() << nl
<< " feature edges : " << newSet.featureEdges().size() << nl
<< " of which" << nl
<< " region edges : " << newSet.nRegionEdges() << nl
<< " external edges : " << newSet.nExternalEdges() << nl
<< " internal edges : " << newSet.nInternalEdges() << nl
<< endl;
// Extracting and writing a extendedFeatureEdgeMesh
extendedFeatureEdgeMesh feMesh
(
newSet,
runTime,
sFeatFileName + ".extendedFeatureEdgeMesh"
);
Info<< nl << "Writing extendedFeatureEdgeMesh to " << feMesh.objectPath()
<< endl;
if (writeObj)
{
feMesh.writeObj(surfFileName.lessExt().name());
}
feMesh.write();
// Write a featureEdgeMesh for backwards compatibility
{
featureEdgeMesh bfeMesh
(
IOobject
(
surfFileName.lessExt().name() + ".eMesh", // name
runTime.constant(), // instance
"triSurface",
runTime, // registry
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
feMesh.points(),
feMesh.edges()
);
Info<< nl << "Writing featureEdgeMesh to "
<< bfeMesh.objectPath() << endl;
bfeMesh.regIOobject::write();
}
triSurfaceMesh searchSurf
(
IOobject
(
sFeatFileName + ".closeness",
runTime.constant(),
"extendedFeatureEdgeMesh",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf
);
if (!curvature)
{
Info<< "End\n" << endl;
return 0;
}
// Find close features
// // Dummy trim operation to mark features
// labelList featureEdgeIndexing = newSet.trimFeatures(-GREAT, 0);
// scalarField surfacePtFeatureIndex(surf.points().size(), -1);
// forAll(newSet.featureEdges(), eI)
// {
// const edge& e = surf.edges()[newSet.featureEdges()[eI]];
// surfacePtFeatureIndex[surf.meshPoints()[e.start()]] =
// featureEdgeIndexing[newSet.featureEdges()[eI]];
// surfacePtFeatureIndex[surf.meshPoints()[e.end()]] =
// featureEdgeIndexing[newSet.featureEdges()[eI]];
// }
// if (writeVTK)
// {
// vtkSurfaceWriter().write
// (
// runTime.constant()/"triSurface", // outputDir
// sFeatFileName, // surfaceName
// surf.points(),
// faces,
// "surfacePtFeatureIndex", // fieldName
// surfacePtFeatureIndex,
// true, // isNodeValues
// true // verbose
// );
// }
// Random rndGen(343267);
// treeBoundBox surfBB
// (
// treeBoundBox(searchSurf.bounds()).extend(rndGen, 1e-4)
// );
// surfBB.min() -= Foam::point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
// surfBB.max() += Foam::point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
// indexedOctree<treeDataEdge> ftEdTree
// (
// treeDataEdge
// (
// false,
// surf.edges(),
// surf.localPoints(),
// newSet.featureEdges()
// ),
// surfBB,
// 8, // maxLevel
// 10, // leafsize
// 3.0 // duplicity
// );
// labelList nearPoints = ftEdTree.findBox
// (
// treeBoundBox
// (
// sPt - featureSearchSpan*Foam::vector::one,
// sPt + featureSearchSpan*Foam::vector::one
// )
// );
Info<< "Examine curvature, feature proximity and internal and "
<< "external closeness." << endl;
// Internal and external closeness
// Prepare start and end points for intersection tests
const vectorField& normals = searchSurf.faceNormals();
scalar span = searchSurf.bounds().mag();
args.optionReadIfPresent("closeness", span);
scalar externalAngleTolerance = 10;
scalar externalToleranceCosAngle = Foam::cos
(
degToRad(180 - externalAngleTolerance)
);
scalar internalAngleTolerance = 45;
scalar internalToleranceCosAngle = Foam::cos
(
degToRad(180 - internalAngleTolerance)
);
Info<< "externalToleranceCosAngle: " << externalToleranceCosAngle << nl
<< "internalToleranceCosAngle: " << internalToleranceCosAngle
<< endl;
// Info<< "span " << span << endl;
pointField start = searchSurf.faceCentres() - span*normals;
pointField end = searchSurf.faceCentres() + span*normals;
const pointField& faceCentres = searchSurf.faceCentres();
List<List<pointIndexHit> > allHitInfo;
// Find all intersections (in order)
searchSurf.findLineAll(start, end, allHitInfo);
scalarField internalCloseness(start.size(), GREAT);
scalarField externalCloseness(start.size(), GREAT);
forAll(allHitInfo, fI)
{
const List<pointIndexHit>& hitInfo = allHitInfo[fI];
if (hitInfo.size() < 1)
{
drawHitProblem(fI, surf, start, faceCentres, end, hitInfo);
// FatalErrorIn(args.executable())
// << "findLineAll did not hit its own face."
// << exit(FatalError);
}
else if (hitInfo.size() == 1)
{
if (!hitInfo[0].hit())
{
// FatalErrorIn(args.executable())
// << "findLineAll did not hit any face."
// << exit(FatalError);
}
else if (hitInfo[0].index() != fI)
{
drawHitProblem(fI, surf, start, faceCentres, end, hitInfo);
// FatalErrorIn(args.executable())
// << "findLineAll did not hit its own face."
// << exit(FatalError);
}
}
else
{
label ownHitI = -1;
forAll(hitInfo, hI)
{
// Find the hit on the triangle that launched the ray
if (hitInfo[hI].index() == fI)
{
ownHitI = hI;
break;
}
}
if (ownHitI < 0)
{
drawHitProblem(fI, surf, start, faceCentres, end, hitInfo);
// FatalErrorIn(args.executable())
// << "findLineAll did not hit its own face."
// << exit(FatalError);
}
else if (ownHitI == 0)
{
// There are no internal hits, the first hit is the closest
// external hit
if
(
(normals[fI] & normals[hitInfo[ownHitI + 1].index()])
< externalToleranceCosAngle
)
{
externalCloseness[fI] = mag
(
faceCentres[fI] - hitInfo[ownHitI + 1].hitPoint()
);
}
}
else if (ownHitI == hitInfo.size() - 1)
{
// There are no external hits, the last but one hit is the
// closest internal hit
if
(
(normals[fI] & normals[hitInfo[ownHitI - 1].index()])
< internalToleranceCosAngle
)
{
internalCloseness[fI] = mag
(
faceCentres[fI] - hitInfo[ownHitI - 1].hitPoint()
);
}
}
else
{
if
(
(normals[fI] & normals[hitInfo[ownHitI + 1].index()])
< externalToleranceCosAngle
)
{
externalCloseness[fI] = mag
(
faceCentres[fI] - hitInfo[ownHitI + 1].hitPoint()
);
}
if
(
(normals[fI] & normals[hitInfo[ownHitI - 1].index()])
< internalToleranceCosAngle
)
{
internalCloseness[fI] = mag
(
faceCentres[fI] - hitInfo[ownHitI - 1].hitPoint()
);
}
}
}
}
triSurfaceScalarField internalClosenessField
(
IOobject
(
sFeatFileName + ".internalCloseness",
runTime.constant(),
"extendedFeatureEdgeMesh",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimLength,
internalCloseness
);
internalClosenessField.write();
triSurfaceScalarField externalClosenessField
(
IOobject
(
sFeatFileName + ".externalCloseness",
runTime.constant(),
"extendedFeatureEdgeMesh",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimLength,
externalCloseness
);
externalClosenessField.write();
#ifdef ENABLE_CURVATURE
scalarField k = calcCurvature(surf);
// Modify the curvature values on feature edges and points to be zero.
forAll(newSet.featureEdges(), fEI)
{
const edge& e = surf.edges()[newSet.featureEdges()[fEI]];
k[surf.meshPoints()[e.start()]] = 0.0;
k[surf.meshPoints()[e.end()]] = 0.0;
}
triSurfacePointScalarField kField
(
IOobject
(
sFeatFileName + ".curvature",
runTime.constant(),
"extendedFeatureEdgeMesh",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimLength,
k
);
kField.write();
#endif
if (writeVTK)
{
vtkSurfaceWriter().write
(
runTime.constant()/"triSurface", // outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"internalCloseness", // fieldName
internalCloseness,
false, // isNodeValues
true // verbose
);
vtkSurfaceWriter().write
(
runTime.constant()/"triSurface", // outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"externalCloseness", // fieldName
externalCloseness,
false, // isNodeValues
true // verbose
);
# ifdef ENABLE_CURVATURE
vtkSurfaceWriter().write
(
runTime.constant()/"triSurface", // outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"curvature", // fieldName
k,
true, // isNodeValues
true // verbose
);
# endif
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //