Integration of VOF MULES new interfaces. Update of VOF solvers and all instances of MULES in the code. Integration of reactingTwoPhaseEuler and reactingMultiphaseEuler solvers and sub-models Updating reactingEuler tutorials accordingly (most of them tested) New eRefConst thermo used in tutorials. Some modifications at thermo specie level affecting mostly eThermo. hThermo mostly unaffected New chtMultiRegionTwoPhaseEulerFoam solver for quenching and tutorial. Phases sub-models for reactingTwoPhaseEuler and reactingMultiphaseEuler were moved to src/phaseSystemModels/reactingEulerFoam in order to be used by BC for chtMultiRegionTwoPhaseEulerFoam. Update of interCondensatingEvaporatingFoam solver.
579 lines
13 KiB
C
579 lines
13 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd |
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
| Copyright (C) 2013-2018 OpenFOAM Foundation
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "twoPhaseSystem.H"
|
|
#include "PhaseCompressibleTurbulenceModel.H"
|
|
#include "BlendedInterfacialModel.H"
|
|
#include "virtualMassModel.H"
|
|
#include "heatTransferModel.H"
|
|
#include "liftModel.H"
|
|
#include "wallLubricationModel.H"
|
|
#include "turbulentDispersionModel.H"
|
|
#include "fvMatrix.H"
|
|
#include "surfaceInterpolate.H"
|
|
#include "MULES.H"
|
|
#include "subCycle.H"
|
|
#include "fvcDdt.H"
|
|
#include "fvcDiv.H"
|
|
#include "fvcSnGrad.H"
|
|
#include "fvcFlux.H"
|
|
#include "fvcCurl.H"
|
|
#include "fvmDdt.H"
|
|
#include "fvmLaplacian.H"
|
|
#include "fixedValueFvsPatchFields.H"
|
|
#include "blendingMethod.H"
|
|
#include "HashPtrTable.H"
|
|
#include "UniformField.H"
|
|
|
|
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
|
|
|
Foam::twoPhaseSystem::twoPhaseSystem
|
|
(
|
|
const fvMesh& mesh,
|
|
const dimensionedVector& g
|
|
)
|
|
:
|
|
IOdictionary
|
|
(
|
|
IOobject
|
|
(
|
|
"phaseProperties",
|
|
mesh.time().constant(),
|
|
mesh,
|
|
IOobject::MUST_READ_IF_MODIFIED,
|
|
IOobject::NO_WRITE
|
|
)
|
|
),
|
|
|
|
mesh_(mesh),
|
|
|
|
phase1_
|
|
(
|
|
*this,
|
|
*this,
|
|
wordList(lookup("phases"))[0]
|
|
),
|
|
|
|
phase2_
|
|
(
|
|
*this,
|
|
*this,
|
|
wordList(lookup("phases"))[1]
|
|
),
|
|
|
|
phi_
|
|
(
|
|
IOobject
|
|
(
|
|
"phi",
|
|
mesh.time().timeName(),
|
|
mesh,
|
|
IOobject::NO_READ,
|
|
IOobject::AUTO_WRITE
|
|
),
|
|
this->calcPhi()
|
|
),
|
|
|
|
dgdt_
|
|
(
|
|
IOobject
|
|
(
|
|
"dgdt",
|
|
mesh.time().timeName(),
|
|
mesh,
|
|
IOobject::READ_IF_PRESENT,
|
|
IOobject::AUTO_WRITE
|
|
),
|
|
mesh,
|
|
dimensionedScalar("dgdt", dimless/dimTime, 0)
|
|
)
|
|
{
|
|
phase2_.volScalarField::operator=(scalar(1) - phase1_);
|
|
|
|
|
|
// Blending
|
|
forAllConstIter(dictionary, subDict("blending"), iter)
|
|
{
|
|
blendingMethods_.insert
|
|
(
|
|
iter().dict().dictName(),
|
|
blendingMethod::New
|
|
(
|
|
iter().dict(),
|
|
wordList(lookup("phases"))
|
|
)
|
|
);
|
|
}
|
|
|
|
|
|
// Pairs
|
|
|
|
phasePair::scalarTable sigmaTable(lookup("sigma"));
|
|
phasePair::dictTable aspectRatioTable(lookup("aspectRatio"));
|
|
|
|
pair_.set
|
|
(
|
|
new phasePair
|
|
(
|
|
phase1_,
|
|
phase2_,
|
|
g,
|
|
sigmaTable
|
|
)
|
|
);
|
|
|
|
pair1In2_.set
|
|
(
|
|
new orderedPhasePair
|
|
(
|
|
phase1_,
|
|
phase2_,
|
|
g,
|
|
sigmaTable,
|
|
aspectRatioTable
|
|
)
|
|
);
|
|
|
|
pair2In1_.set
|
|
(
|
|
new orderedPhasePair
|
|
(
|
|
phase2_,
|
|
phase1_,
|
|
g,
|
|
sigmaTable,
|
|
aspectRatioTable
|
|
)
|
|
);
|
|
|
|
|
|
// Models
|
|
|
|
drag_.set
|
|
(
|
|
new BlendedInterfacialModel<dragModel>
|
|
(
|
|
lookup("drag"),
|
|
(
|
|
blendingMethods_.found("drag")
|
|
? blendingMethods_["drag"]
|
|
: blendingMethods_["default"]
|
|
),
|
|
pair_,
|
|
pair1In2_,
|
|
pair2In1_,
|
|
false // Do not zero drag coefficient at fixed-flux BCs
|
|
)
|
|
);
|
|
|
|
virtualMass_.set
|
|
(
|
|
new BlendedInterfacialModel<virtualMassModel>
|
|
(
|
|
lookup("virtualMass"),
|
|
(
|
|
blendingMethods_.found("virtualMass")
|
|
? blendingMethods_["virtualMass"]
|
|
: blendingMethods_["default"]
|
|
),
|
|
pair_,
|
|
pair1In2_,
|
|
pair2In1_
|
|
)
|
|
);
|
|
|
|
heatTransfer_.set
|
|
(
|
|
new BlendedInterfacialModel<heatTransferModel>
|
|
(
|
|
lookup("heatTransfer"),
|
|
(
|
|
blendingMethods_.found("heatTransfer")
|
|
? blendingMethods_["heatTransfer"]
|
|
: blendingMethods_["default"]
|
|
),
|
|
pair_,
|
|
pair1In2_,
|
|
pair2In1_
|
|
)
|
|
);
|
|
|
|
lift_.set
|
|
(
|
|
new BlendedInterfacialModel<liftModel>
|
|
(
|
|
lookup("lift"),
|
|
(
|
|
blendingMethods_.found("lift")
|
|
? blendingMethods_["lift"]
|
|
: blendingMethods_["default"]
|
|
),
|
|
pair_,
|
|
pair1In2_,
|
|
pair2In1_
|
|
)
|
|
);
|
|
|
|
wallLubrication_.set
|
|
(
|
|
new BlendedInterfacialModel<wallLubricationModel>
|
|
(
|
|
lookup("wallLubrication"),
|
|
(
|
|
blendingMethods_.found("wallLubrication")
|
|
? blendingMethods_["wallLubrication"]
|
|
: blendingMethods_["default"]
|
|
),
|
|
pair_,
|
|
pair1In2_,
|
|
pair2In1_
|
|
)
|
|
);
|
|
|
|
turbulentDispersion_.set
|
|
(
|
|
new BlendedInterfacialModel<turbulentDispersionModel>
|
|
(
|
|
lookup("turbulentDispersion"),
|
|
(
|
|
blendingMethods_.found("turbulentDispersion")
|
|
? blendingMethods_["turbulentDispersion"]
|
|
: blendingMethods_["default"]
|
|
),
|
|
pair_,
|
|
pair1In2_,
|
|
pair2In1_
|
|
)
|
|
);
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
|
|
|
|
Foam::twoPhaseSystem::~twoPhaseSystem()
|
|
{}
|
|
|
|
|
|
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::rho() const
|
|
{
|
|
return phase1_*phase1_.thermo().rho() + phase2_*phase2_.thermo().rho();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volVectorField> Foam::twoPhaseSystem::U() const
|
|
{
|
|
return phase1_*phase1_.U() + phase2_*phase2_.U();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::calcPhi() const
|
|
{
|
|
return
|
|
fvc::interpolate(phase1_)*phase1_.phi()
|
|
+ fvc::interpolate(phase2_)*phase2_.phi();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::Kd() const
|
|
{
|
|
return drag_->K();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::Kdf() const
|
|
{
|
|
return drag_->Kf();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::Vm() const
|
|
{
|
|
return virtualMass_->K();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::Vmf() const
|
|
{
|
|
return virtualMass_->Kf();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::Kh() const
|
|
{
|
|
return heatTransfer_->K();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volVectorField> Foam::twoPhaseSystem::F() const
|
|
{
|
|
return lift_->F<vector>() + wallLubrication_->F<vector>();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::Ff() const
|
|
{
|
|
return lift_->Ff() + wallLubrication_->Ff();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::D() const
|
|
{
|
|
return turbulentDispersion_->D();
|
|
}
|
|
|
|
|
|
void Foam::twoPhaseSystem::solve()
|
|
{
|
|
const Time& runTime = mesh_.time();
|
|
|
|
volScalarField& alpha1 = phase1_;
|
|
volScalarField& alpha2 = phase2_;
|
|
|
|
const surfaceScalarField& phi1 = phase1_.phi();
|
|
const surfaceScalarField& phi2 = phase2_.phi();
|
|
|
|
const dictionary& alphaControls = mesh_.solverDict
|
|
(
|
|
alpha1.name()
|
|
);
|
|
|
|
label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));
|
|
label nAlphaCorr(readLabel(alphaControls.lookup("nAlphaCorr")));
|
|
|
|
word alphaScheme("div(phi," + alpha1.name() + ')');
|
|
word alpharScheme("div(phir," + alpha1.name() + ')');
|
|
|
|
alpha1.correctBoundaryConditions();
|
|
|
|
|
|
surfaceScalarField phic("phic", phi_);
|
|
surfaceScalarField phir("phir", phi1 - phi2);
|
|
|
|
tmp<surfaceScalarField> alpha1alpha2f;
|
|
|
|
if (pPrimeByA_.valid())
|
|
{
|
|
alpha1alpha2f =
|
|
fvc::interpolate(max(alpha1, scalar(0)))
|
|
*fvc::interpolate(max(alpha2, scalar(0)));
|
|
|
|
surfaceScalarField phiP
|
|
(
|
|
pPrimeByA_()*fvc::snGrad(alpha1, "bounded")*mesh_.magSf()
|
|
);
|
|
|
|
phir += phiP;
|
|
}
|
|
|
|
for (int acorr=0; acorr<nAlphaCorr; acorr++)
|
|
{
|
|
volScalarField::Internal Sp
|
|
(
|
|
IOobject
|
|
(
|
|
"Sp",
|
|
runTime.timeName(),
|
|
mesh_
|
|
),
|
|
mesh_,
|
|
dimensionedScalar("Sp", dgdt_.dimensions(), 0.0)
|
|
);
|
|
|
|
volScalarField::Internal Su
|
|
(
|
|
IOobject
|
|
(
|
|
"Su",
|
|
runTime.timeName(),
|
|
mesh_
|
|
),
|
|
// Divergence term is handled explicitly to be
|
|
// consistent with the explicit transport solution
|
|
fvc::div(phi_)*min(alpha1, scalar(1))
|
|
);
|
|
|
|
forAll(dgdt_, celli)
|
|
{
|
|
if (dgdt_[celli] > 0.0)
|
|
{
|
|
Sp[celli] -= dgdt_[celli]/max(1.0 - alpha1[celli], 1e-4);
|
|
Su[celli] += dgdt_[celli]/max(1.0 - alpha1[celli], 1e-4);
|
|
}
|
|
else if (dgdt_[celli] < 0.0)
|
|
{
|
|
Sp[celli] += dgdt_[celli]/max(alpha1[celli], 1e-4);
|
|
}
|
|
}
|
|
|
|
surfaceScalarField alphaPhic1
|
|
(
|
|
fvc::flux
|
|
(
|
|
phic,
|
|
alpha1,
|
|
alphaScheme
|
|
)
|
|
+ fvc::flux
|
|
(
|
|
-fvc::flux(-phir, scalar(1) - alpha1, alpharScheme),
|
|
alpha1,
|
|
alpharScheme
|
|
)
|
|
);
|
|
|
|
phase1_.correctInflowOutflow(alphaPhic1);
|
|
|
|
if (nAlphaSubCycles > 1)
|
|
{
|
|
for
|
|
(
|
|
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
|
|
!(++alphaSubCycle).end();
|
|
)
|
|
{
|
|
surfaceScalarField alphaPhic10(alphaPhic1);
|
|
|
|
MULES::explicitSolve
|
|
(
|
|
geometricOneField(),
|
|
alpha1,
|
|
phi_,
|
|
alphaPhic10,
|
|
(alphaSubCycle.index()*Sp)(),
|
|
(Su - (alphaSubCycle.index() - 1)*Sp*alpha1)(),
|
|
UniformField<scalar>(phase1_.alphaMax()),
|
|
zeroField()
|
|
);
|
|
|
|
if (alphaSubCycle.index() == 1)
|
|
{
|
|
phase1_.alphaPhi() = alphaPhic10;
|
|
}
|
|
else
|
|
{
|
|
phase1_.alphaPhi() += alphaPhic10;
|
|
}
|
|
}
|
|
|
|
phase1_.alphaPhi() /= nAlphaSubCycles;
|
|
}
|
|
else
|
|
{
|
|
MULES::explicitSolve
|
|
(
|
|
geometricOneField(),
|
|
alpha1,
|
|
phi_,
|
|
alphaPhic1,
|
|
Sp,
|
|
Su,
|
|
UniformField<scalar>(phase1_.alphaMax()),
|
|
zeroField()
|
|
);
|
|
|
|
phase1_.alphaPhi() = alphaPhic1;
|
|
}
|
|
|
|
if (pPrimeByA_.valid())
|
|
{
|
|
fvScalarMatrix alpha1Eqn
|
|
(
|
|
fvm::ddt(alpha1) - fvc::ddt(alpha1)
|
|
- fvm::laplacian(alpha1alpha2f()*pPrimeByA_(), alpha1, "bounded")
|
|
);
|
|
|
|
alpha1Eqn.relax();
|
|
alpha1Eqn.solve();
|
|
|
|
phase1_.alphaPhi() += alpha1Eqn.flux();
|
|
}
|
|
|
|
phase1_.alphaRhoPhi() =
|
|
fvc::interpolate(phase1_.rho())*phase1_.alphaPhi();
|
|
|
|
phase2_.alphaPhi() = phi_ - phase1_.alphaPhi();
|
|
phase2_.correctInflowOutflow(phase2_.alphaPhi());
|
|
phase2_.alphaRhoPhi() =
|
|
fvc::interpolate(phase2_.rho())*phase2_.alphaPhi();
|
|
|
|
Info<< alpha1.name() << " volume fraction = "
|
|
<< alpha1.weightedAverage(mesh_.V()).value()
|
|
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
|
|
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
|
|
<< endl;
|
|
|
|
// Ensure the phase-fractions are bounded
|
|
alpha1.max(0);
|
|
alpha1.min(1);
|
|
|
|
alpha2 = scalar(1) - alpha1;
|
|
}
|
|
}
|
|
|
|
|
|
void Foam::twoPhaseSystem::correct()
|
|
{
|
|
phase1_.correct();
|
|
phase2_.correct();
|
|
}
|
|
|
|
|
|
void Foam::twoPhaseSystem::correctTurbulence()
|
|
{
|
|
phase1_.turbulence().correct();
|
|
phase2_.turbulence().correct();
|
|
}
|
|
|
|
|
|
bool Foam::twoPhaseSystem::read()
|
|
{
|
|
if (regIOobject::read())
|
|
{
|
|
bool readOK = true;
|
|
|
|
readOK &= phase1_.read(*this);
|
|
readOK &= phase2_.read(*this);
|
|
|
|
// models ...
|
|
|
|
return readOK;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
const Foam::dimensionedScalar& Foam::twoPhaseSystem::sigma() const
|
|
{
|
|
return pair_->sigma();
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|