openfoam/src/TurbulenceModels/turbulenceModels/derivedFvPatchFields/wallFunctions/epsilonWallFunctions/epsilonWallFunction/epsilonWallFunctionFvPatchScalarField.C
Kutalmis Bercin 07a5babdde ENH: add wall-function blending treatments
Please see the Extended Code Guide and header files for the details.

    ENH: add wall-function blending treatments to epsilonWallFunc
         adds `stepwise`, `max`, `binomial`, and `exponential` wall-function
         blending treatments:
    COMP: check backward compatibility for:
          `serial`
          `parallel`
          `serial restart`
          `parallel restart`
          computations in comparison to the following tutorials from v1906:
          `circuitBoardCooling  condensatingVessel  evaporationMultiComponent
           hotRoom  movingBox  multiRegionHeaterRadiation  reverseBurner
           solidQuenching2D`
    STYLE: simplify `forAll`s

    ENH: add new wall blending approaches into omegaWallFunction
         adds stepwise, max, binomial, and exponential wall function blending apprs.
         ensures/forces the backward compatibility:
           - blended = true    (blending:BINOMIAL2) (default)
           - blended = false   (blending:STEPWISE)
        simplifies forAlls
        deprecates objects:
           - "blended" - use "blending::" options
           - "includeG" - as was hardcoded

    ENH: add wall-func blending treatments into nutWallFuncs
    - nutWallFunction
    - nutUWallFunction
    - nutkWallFunction
    COMP: check backward compatibility for:
          - serial
          - parallel
          - serial restart
          - parallel restart
          computations in comparison to the following tutorials from v1906:
          - heatTransfer/buoyantSimpleFoam/buoyantCavity
          - compressible/rhoSimpleFoam/gasMixing/injectorPipe

    DOC: modify header docs in wallFuncs
    - nutUTabulatedWallFunction
    - nutUSpaldingWallFunction
    - nutURoughWallFunction
    - nutUBlendedWallFunction
      - REVERT: change write order
    - nutLowReWallFunction
    - kLowReWallFunction:
      - ENH: protect against zero-division error through 'Ceps2' entry
      - STYLE: remove few redundant empty lines
2020-06-10 10:09:31 +01:00

645 lines
16 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2019 OpenFOAM Foundation
Copyright (C) 2017-2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "epsilonWallFunctionFvPatchScalarField.H"
#include "nutWallFunctionFvPatchScalarField.H"
#include "turbulenceModel.H"
#include "fvMatrix.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
const Foam::Enum
<
Foam::epsilonWallFunctionFvPatchScalarField::blendingType
>
Foam::epsilonWallFunctionFvPatchScalarField::blendingTypeNames
({
{ blendingType::STEPWISE , "stepwise" },
{ blendingType::MAX , "max" },
{ blendingType::BINOMIAL , "binomial" },
{ blendingType::EXPONENTIAL, "exponential" }
});
Foam::scalar Foam::epsilonWallFunctionFvPatchScalarField::tolerance_ = 1e-5;
// * * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * //
void Foam::epsilonWallFunctionFvPatchScalarField::setMaster()
{
if (master_ != -1)
{
return;
}
const volScalarField& epsilon =
static_cast<const volScalarField&>(this->internalField());
const volScalarField::Boundary& bf = epsilon.boundaryField();
label master = -1;
forAll(bf, patchi)
{
if (isA<epsilonWallFunctionFvPatchScalarField>(bf[patchi]))
{
epsilonWallFunctionFvPatchScalarField& epf = epsilonPatch(patchi);
if (master == -1)
{
master = patchi;
}
epf.master() = master;
}
}
}
void Foam::epsilonWallFunctionFvPatchScalarField::createAveragingWeights()
{
const volScalarField& epsilon =
static_cast<const volScalarField&>(this->internalField());
const volScalarField::Boundary& bf = epsilon.boundaryField();
const fvMesh& mesh = epsilon.mesh();
if (initialised_ && !mesh.changing())
{
return;
}
volScalarField weights
(
IOobject
(
"weights",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false // do not register
),
mesh,
dimensionedScalar(dimless, Zero)
);
DynamicList<label> epsilonPatches(bf.size());
forAll(bf, patchi)
{
if (isA<epsilonWallFunctionFvPatchScalarField>(bf[patchi]))
{
epsilonPatches.append(patchi);
const labelUList& faceCells = bf[patchi].patch().faceCells();
for (const auto& faceCell : faceCells)
{
++weights[faceCell];
}
}
}
cornerWeights_.setSize(bf.size());
for (const auto& patchi : epsilonPatches)
{
const fvPatchScalarField& wf = weights.boundaryField()[patchi];
cornerWeights_[patchi] = 1.0/wf.patchInternalField();
}
G_.setSize(internalField().size(), Zero);
epsilon_.setSize(internalField().size(), Zero);
initialised_ = true;
}
Foam::epsilonWallFunctionFvPatchScalarField&
Foam::epsilonWallFunctionFvPatchScalarField::epsilonPatch
(
const label patchi
)
{
const volScalarField& epsilon =
static_cast<const volScalarField&>(this->internalField());
const volScalarField::Boundary& bf = epsilon.boundaryField();
const epsilonWallFunctionFvPatchScalarField& epf =
refCast<const epsilonWallFunctionFvPatchScalarField>(bf[patchi]);
return const_cast<epsilonWallFunctionFvPatchScalarField&>(epf);
}
void Foam::epsilonWallFunctionFvPatchScalarField::calculateTurbulenceFields
(
const turbulenceModel& turbulence,
scalarField& G0,
scalarField& epsilon0
)
{
// Accumulate all of the G and epsilon contributions
forAll(cornerWeights_, patchi)
{
if (!cornerWeights_[patchi].empty())
{
epsilonWallFunctionFvPatchScalarField& epf = epsilonPatch(patchi);
const List<scalar>& w = cornerWeights_[patchi];
epf.calculate(turbulence, w, epf.patch(), G0, epsilon0);
}
}
// Apply zero-gradient condition for epsilon
forAll(cornerWeights_, patchi)
{
if (!cornerWeights_[patchi].empty())
{
epsilonWallFunctionFvPatchScalarField& epf = epsilonPatch(patchi);
epf == scalarField(epsilon0, epf.patch().faceCells());
}
}
}
void Foam::epsilonWallFunctionFvPatchScalarField::calculate
(
const turbulenceModel& turbModel,
const List<scalar>& cornerWeights,
const fvPatch& patch,
scalarField& G0,
scalarField& epsilon0
)
{
const label patchi = patch.index();
const nutWallFunctionFvPatchScalarField& nutw =
nutWallFunctionFvPatchScalarField::nutw(turbModel, patchi);
const scalarField& y = turbModel.y()[patchi];
const tmp<scalarField> tnuw = turbModel.nu(patchi);
const scalarField& nuw = tnuw();
const tmp<volScalarField> tk = turbModel.k();
const volScalarField& k = tk();
const fvPatchVectorField& Uw = turbModel.U().boundaryField()[patchi];
const scalarField magGradUw(mag(Uw.snGrad()));
const scalar Cmu25 = pow025(nutw.Cmu());
const scalar Cmu75 = pow(nutw.Cmu(), 0.75);
// Set epsilon and G
forAll(nutw, facei)
{
const label celli = patch.faceCells()[facei];
const scalar yPlus = Cmu25*y[facei]*sqrt(k[celli])/nuw[facei];
const scalar w = cornerWeights[facei];
scalar epsilonBlended = 0.0;
// Contribution from the viscous sublayer
const scalar epsilonVis = w*2.0*k[celli]*nuw[facei]/sqr(y[facei]);
// Contribution from the inertial sublayer
const scalar epsilonLog =
w*Cmu75*pow(k[celli], 1.5)/(nutw.kappa()*y[facei]);
switch (blending_)
{
case blendingType::STEPWISE:
{
if (lowReCorrection_ && yPlus < nutw.yPlusLam())
{
epsilonBlended = epsilonVis;
}
else
{
epsilonBlended = epsilonLog;
}
break;
}
case blendingType::MAX:
{
// (PH:Eq. 27)
epsilonBlended = max(epsilonVis, epsilonLog);
break;
}
case blendingType::BINOMIAL:
{
// (ME:Eqs. 15-16)
epsilonBlended =
pow
(
pow(epsilonVis, n_) + pow(epsilonLog, n_),
1.0/n_
);
break;
}
case blendingType::EXPONENTIAL:
{
// (PH:p. 193)
const scalar Gamma = 0.001*pow4(yPlus)/(1.0 + yPlus);
const scalar invGamma = 1.0/(Gamma + ROOTVSMALL);
epsilonBlended =
epsilonVis*exp(-Gamma) + epsilonLog*exp(-invGamma);
break;
}
}
epsilon0[celli] += epsilonBlended;
if (!(lowReCorrection_ && yPlus < nutw.yPlusLam()))
{
G0[celli] +=
w
*(nutw[facei] + nuw[facei])
*magGradUw[facei]
*Cmu25*sqrt(k[celli])
/(nutw.kappa()*y[facei]);
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::epsilonWallFunctionFvPatchScalarField::
epsilonWallFunctionFvPatchScalarField
(
const fvPatch& p,
const DimensionedField<scalar, volMesh>& iF
)
:
fixedValueFvPatchField<scalar>(p, iF),
blending_(blendingType::STEPWISE),
n_(2.0),
lowReCorrection_(false),
initialised_(false),
master_(-1),
G_(),
epsilon_(),
cornerWeights_()
{}
Foam::epsilonWallFunctionFvPatchScalarField::
epsilonWallFunctionFvPatchScalarField
(
const epsilonWallFunctionFvPatchScalarField& ptf,
const fvPatch& p,
const DimensionedField<scalar, volMesh>& iF,
const fvPatchFieldMapper& mapper
)
:
fixedValueFvPatchField<scalar>(ptf, p, iF, mapper),
blending_(ptf.blending_),
n_(ptf.n_),
lowReCorrection_(ptf.lowReCorrection_),
initialised_(false),
master_(-1),
G_(),
epsilon_(),
cornerWeights_()
{}
Foam::epsilonWallFunctionFvPatchScalarField::
epsilonWallFunctionFvPatchScalarField
(
const fvPatch& p,
const DimensionedField<scalar, volMesh>& iF,
const dictionary& dict
)
:
fixedValueFvPatchField<scalar>(p, iF, dict),
blending_
(
blendingTypeNames.getOrDefault
(
"blending",
dict,
blendingType::STEPWISE
)
),
n_
(
dict.getCheckOrDefault<scalar>
(
"n",
2.0,
scalarMinMax::ge(0)
)
),
lowReCorrection_(dict.getOrDefault("lowReCorrection", false)),
initialised_(false),
master_(-1),
G_(),
epsilon_(),
cornerWeights_()
{
// Apply zero-gradient condition on start-up
this->operator==(patchInternalField());
}
Foam::epsilonWallFunctionFvPatchScalarField::
epsilonWallFunctionFvPatchScalarField
(
const epsilonWallFunctionFvPatchScalarField& ewfpsf
)
:
fixedValueFvPatchField<scalar>(ewfpsf),
blending_(ewfpsf.blending_),
n_(ewfpsf.n_),
lowReCorrection_(ewfpsf.lowReCorrection_),
initialised_(false),
master_(-1),
G_(),
epsilon_(),
cornerWeights_()
{}
Foam::epsilonWallFunctionFvPatchScalarField::
epsilonWallFunctionFvPatchScalarField
(
const epsilonWallFunctionFvPatchScalarField& ewfpsf,
const DimensionedField<scalar, volMesh>& iF
)
:
fixedValueFvPatchField<scalar>(ewfpsf, iF),
blending_(ewfpsf.blending_),
n_(ewfpsf.n_),
lowReCorrection_(ewfpsf.lowReCorrection_),
initialised_(false),
master_(-1),
G_(),
epsilon_(),
cornerWeights_()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::scalarField& Foam::epsilonWallFunctionFvPatchScalarField::G
(
bool init
)
{
if (patch().index() == master_)
{
if (init)
{
G_ = 0.0;
}
return G_;
}
return epsilonPatch(master_).G();
}
Foam::scalarField& Foam::epsilonWallFunctionFvPatchScalarField::epsilon
(
bool init
)
{
if (patch().index() == master_)
{
if (init)
{
epsilon_ = 0.0;
}
return epsilon_;
}
return epsilonPatch(master_).epsilon(init);
}
void Foam::epsilonWallFunctionFvPatchScalarField::updateCoeffs()
{
if (updated())
{
return;
}
const turbulenceModel& turbModel = db().lookupObject<turbulenceModel>
(
IOobject::groupName
(
turbulenceModel::propertiesName,
internalField().group()
)
);
setMaster();
if (patch().index() == master_)
{
createAveragingWeights();
calculateTurbulenceFields(turbModel, G(true), epsilon(true));
}
const scalarField& G0 = this->G();
const scalarField& epsilon0 = this->epsilon();
typedef DimensionedField<scalar, volMesh> FieldType;
FieldType& G = db().lookupObjectRef<FieldType>(turbModel.GName());
FieldType& epsilon = const_cast<FieldType&>(internalField());
forAll(*this, facei)
{
const label celli = patch().faceCells()[facei];
G[celli] = G0[celli];
epsilon[celli] = epsilon0[celli];
}
fvPatchField<scalar>::updateCoeffs();
}
void Foam::epsilonWallFunctionFvPatchScalarField::updateWeightedCoeffs
(
const scalarField& weights
)
{
if (updated())
{
return;
}
const turbulenceModel& turbModel = db().lookupObject<turbulenceModel>
(
IOobject::groupName
(
turbulenceModel::propertiesName,
internalField().group()
)
);
setMaster();
if (patch().index() == master_)
{
createAveragingWeights();
calculateTurbulenceFields(turbModel, G(true), epsilon(true));
}
const scalarField& G0 = this->G();
const scalarField& epsilon0 = this->epsilon();
typedef DimensionedField<scalar, volMesh> FieldType;
FieldType& G = db().lookupObjectRef<FieldType>(turbModel.GName());
FieldType& epsilon = const_cast<FieldType&>(internalField());
scalarField& epsilonf = *this;
// Only set the values if the weights are > tolerance
forAll(weights, facei)
{
const scalar w = weights[facei];
if (w > tolerance_)
{
const label celli = patch().faceCells()[facei];
G[celli] = (1.0 - w)*G[celli] + w*G0[celli];
epsilon[celli] = (1.0 - w)*epsilon[celli] + w*epsilon0[celli];
epsilonf[facei] = epsilon[celli];
}
}
fvPatchField<scalar>::updateCoeffs();
}
void Foam::epsilonWallFunctionFvPatchScalarField::manipulateMatrix
(
fvMatrix<scalar>& matrix
)
{
if (manipulatedMatrix())
{
return;
}
matrix.setValues(patch().faceCells(), patchInternalField());
fvPatchField<scalar>::manipulateMatrix(matrix);
}
void Foam::epsilonWallFunctionFvPatchScalarField::manipulateMatrix
(
fvMatrix<scalar>& matrix,
const Field<scalar>& weights
)
{
if (manipulatedMatrix())
{
return;
}
DynamicList<label> constraintCells(weights.size());
DynamicList<scalar> constraintValues(weights.size());
const labelUList& faceCells = patch().faceCells();
const DimensionedField<scalar, volMesh>& fld = internalField();
forAll(weights, facei)
{
// Only set the values if the weights are > tolerance
if (weights[facei] > tolerance_)
{
const label celli = faceCells[facei];
constraintCells.append(celli);
constraintValues.append(fld[celli]);
}
}
if (debug)
{
Pout<< "Patch: " << patch().name()
<< ": number of constrained cells = " << constraintCells.size()
<< " out of " << patch().size()
<< endl;
}
matrix.setValues(constraintCells, constraintValues);
fvPatchField<scalar>::manipulateMatrix(matrix);
}
void Foam::epsilonWallFunctionFvPatchScalarField::write
(
Ostream& os
) const
{
os.writeEntry("lowReCorrection", lowReCorrection_);
os.writeKeyword("blending") << blendingTypeNames[blending_]
<< token::END_STATEMENT << nl;
os.writeEntry("n", n_);
fixedValueFvPatchField<scalar>::write(os);
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
makePatchTypeField
(
fvPatchScalarField,
epsilonWallFunctionFvPatchScalarField
);
}
// ************************************************************************* //