Please refer to the header file documentation for complete set of details.
ENH: add new fvOptions for ABL modelling
- atmAmbientTurbSource
- atmBuoyancyTurbSource
- atmCoriolisUSource
- atmLengthScaleTurbSource
- atmPlantCanopyTurbSource
- atmPlantCanopyUSource
- atmPlantCanopyTSource
- atmNutSource
ENH: add new boundary conditions for ABL modelling
with PatchFunction1 and TimeFunction1 support
- atmAlphatkWallFunction
- atmEpsilonWallFunction
- atmNutkWallFunction
- atmNutUWallFunction
- atmNutWallFunction
- atmOmegaWallFunction
- atmTurbulentHeatFluxTemperature
STYLE: change names of nutkAtmRoughWallFunction -> atmNutkWallFunction by
ensuring the bitwise backward compatibility
ENH: add new variable-scaling force computation method to actuationDiskSource
ENH: review actuationDiskSource and radialActuationDiskSource
ENH: add new function object, ObukhovLength
ENH: add new ABL tutorials/verifications
- verificationAndValidation/atmosphericModels/atmFlatTerrain
- verification with the Leipzig field experiment
- illustration of precursor/successor field mapping
- verificationAndValidation/atmosphericModels/atmForestStability
- verification with the Sweden field experiment
- update incompressible/simpleFoam/turbineSiting
ENH: add generalised log-law type ground-normal inflow boundary conditions for
wind velocity and turbulence quantities for homogeneous, two-dimensional,
dry-air, equilibrium and neutral atmospheric boundary layer (ABL) modelling
ENH: remove `zGround` entry, which is now automatically computed
ENH: add `displacement height` entry, `d`
ENH: add generalised atmBoundaryLayerInletOmega boundary condition
ENH: add a verification case for atmBoundaryLayerInlet BCs
DOC: improve atmBoundaryLayerInlet header documentation
BUG: fix value-entry behaviour in atmBoundaryLayerInlet (fixes#1578)
Without this change:
- for serial-parallel computations, if `value` entry is available in
an `atmBoundaryLayerInlet` BC, the theoretical ABL profile expressions
are not computed, and the `value` entry content is used as a profile data
- for parallel computations, if `value` entry is not available, `decomposePar`
could not be executed.
With this change:
- assuming `value` entry is always be present, the use of `value` entry for
the ABL profile specification is determined by a flag `initABL`
- the default value of the optional flag `initABL` is `true`, but whenever
`initABL=true` is executed, `initABL` is overwritten as `false` for the
subsequent runs, so that `value` entry can be safely used.
Thanks Per Jørgensen for the bug report.
BUG: ensure atmBoundaryInlet conditions are Galilean-invariant (fixes#1692)
Related references:
The ground-normal profile expressions (tag:RH):
Richards, P. J., & Hoxey, R. P. (1993).
Appropriate boundary conditions for computational wind
engineering models using the k-ε turbulence model.
In Computational Wind Engineering 1 (pp. 145-153).
DOI:10.1016/B978-0-444-81688-7.50018-8
Modifications to preserve the profiles downstream (tag:HW):
Hargreaves, D. M., & Wright, N. G. (2007).
On the use of the k–ε model in commercial CFD software
to model the neutral atmospheric boundary layer.
Journal of wind engineering and
industrial aerodynamics, 95(5), 355-369.
DOI:10.1016/j.jweia.2006.08.002
Expression generalisations to allow height
variation for turbulence quantities (tag:YGCJ):
Yang, Y., Gu, M., Chen, S., & Jin, X. (2009).
New inflow boundary conditions for modelling the neutral equilibrium
atmospheric boundary layer in computational wind engineering.
J. of Wind Engineering and Industrial Aerodynamics, 97(2), 88-95.
DOI:10.1016/j.jweia.2008.12.001
The generalised ground-normal profile expression for omega (tag:YGJ):
Yang, Y., Gu, M., & Jin, X., (2009).
New inflow boundary conditions for modelling the
neutral equilibrium atmospheric boundary layer in SST k-ω model.
In: The Seventh Asia-Pacific Conference on Wind Engineering,
November 8-12, Taipei, Taiwan.
Reproduced benchmark:
Rectangular prism shown in FIG 1 of
Hargreaves, D. M., & Wright, N. G. (2007).
On the use of the k–ε model in commercial CFD software
to model the neutral atmospheric boundary layer.
Journal of wind engineering and
industrial aerodynamics, 95(5), 355-369.
DOI:10.1016/j.jweia.2006.08.002
Benchmark data:
HW, 2007 FIG 6
TUT: update simpleFoam/turbineSiting tutorial accordingly
Two boundary conditions for the modelling of semi-permeable baffles have
been added. These baffles are permeable to a number of species within
the flow, and are impermeable to others. The flux of a given species is
calculated as a constant multipled by the drop in mass fraction across
the baffle.
The species mass-fraction condition requires the transfer constant and
the name of the patch on the other side of the baffle:
boundaryField
{
// ...
membraneA
{
type semiPermeableBaffleMassFraction;
samplePatch membranePipe;
c 0.1;
value uniform 0;
}
membraneB
{
type semiPermeableBaffleMassFraction;
samplePatch membraneSleeve;
c 0.1;
value uniform 1;
}
}
If the value of c is omitted, or set to zero, then the patch is
considered impermeable to the species in question. The samplePatch entry
can also be omitted in this case.
The velocity condition does not require any special input:
boundaryField
{
// ...
membraneA
{
type semiPermeableBaffleVelocity;
value uniform (0 0 0);
}
membraneB
{
type semiPermeableBaffleVelocity;
value uniform (0 0 0);
}
}
These two boundary conditions must be used in conjunction, and the
mass-fraction condition must be applied to all species in the
simulation. The calculation will fail with an error message if either is
used in isolation.
A tutorial, combustion/reactingFoam/RAS/membrane, has been added which
demonstrates this transfer process.
This work was done with support from Stefan Lipp, at BASF.