Patch contributed by Mattijs Janssens
- Added projected vertices
- Added projected edges
- Change of blockEdges API (operate on list lambdas)
- Change of blockFaces API (pass in blockDescriptor and blockFacei)
- Added sphere7ProjectedEdges tutorial to demonstrate vertex and edge projection
For example, to mesh a sphere with a single block the geometry is defined in the
blockMeshDict as a searchableSurface:
geometry
{
sphere
{
type searchableSphere;
centre (0 0 0);
radius 1;
}
}
The vertices, block topology and curved edges are defined in the usual
way, for example
v 0.5773502;
mv -0.5773502;
a 0.7071067;
ma -0.7071067;
vertices
(
($mv $mv $mv)
( $v $mv $mv)
( $v $v $mv)
($mv $v $mv)
($mv $mv $v)
( $v $mv $v)
( $v $v $v)
($mv $v $v)
);
blocks
(
hex (0 1 2 3 4 5 6 7) (10 10 10) simpleGrading (1 1 1)
);
edges
(
arc 0 1 (0 $ma $ma)
arc 2 3 (0 $a $ma)
arc 6 7 (0 $a $a)
arc 4 5 (0 $ma $a)
arc 0 3 ($ma 0 $ma)
arc 1 2 ($a 0 $ma)
arc 5 6 ($a 0 $a)
arc 4 7 ($ma 0 $a)
arc 0 4 ($ma $ma 0)
arc 1 5 ($a $ma 0)
arc 2 6 ($a $a 0)
arc 3 7 ($ma $a 0)
);
which will produce a mesh in which the block edges conform to the sphere
but the faces of the block lie somewhere between the original cube and
the spherical surface which is a consequence of the edge-based
transfinite interpolation.
Now the projection of the block faces to the geometry specified above
can also be specified:
faces
(
project (0 4 7 3) sphere
project (2 6 5 1) sphere
project (1 5 4 0) sphere
project (3 7 6 2) sphere
project (0 3 2 1) sphere
project (4 5 6 7) sphere
);
which produces a mesh that actually conforms to the sphere.
See OpenFOAM-dev/tutorials/mesh/blockMesh/sphere
This functionality is experimental and will undergo further development
and generalization in the future to support more complex surfaces,
feature edge specification and extraction etc. Please get involved if
you would like to see blockMesh become a more flexible block-structured
mesher.
Henry G. Weller, CFD Direct.
to handle the size of bubbles created by boiling. To be used in
conjunction with the alphatWallBoilingWallFunction boundary condition.
The IATE variant of the wallBoiling tutorial case is provided to
demonstrate the functionality:
tutorials/multiphase/reactingTwoPhaseEulerFoam/RAS/wallBoilingIATE
Contributed by Juho Peltola, VTT
Notable changes:
1. The same wall function is now used for both phases, but user must
specify phaseType ‘liquid’ or ‘vapor’
2. Runtime selectable submodels for:
- wall heat flux partitioning between the phases
- nucleation site density
- bubble departure frequency
- bubble departure diameter
3. An additional iteration loop for the wall boiling model in case
the initial guess for the wall temperature proves to be poor.
The wallBoiling tutorial has been updated to demonstrate this new functionality.
using a run-time selectable preconditioner
References:
Van der Vorst, H. A. (1992).
Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems.
SIAM Journal on scientific and Statistical Computing, 13(2), 631-644.
Barrett, R., Berry, M. W., Chan, T. F., Demmel, J., Donato, J.,
Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. & Van der Vorst, H.
(1994).
Templates for the solution of linear systems:
building blocks for iterative methods
(Vol. 43). Siam.
See also: https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method
Tests have shown that PBiCGStab with the DILU preconditioner is more
robust, reliable and shows faster convergence (~2x) than PBiCG with
DILU, in particular in parallel where PBiCG occasionally diverges.
This remarkable improvement over PBiCG prompted the update of all
tutorial cases currently using PBiCG to use PBiCGStab instead. If any
issues arise with this update please report on Mantis: http://bugs.openfoam.org
References:
Savill, A. M. (1993).
Some recent progress in the turbulence modelling of by-pass transition.
Near-wall turbulent flows, 829-848.
Savill, A. M. (1996).
One-point closures applied to transition.
In Turbulence and transition modelling (pp. 233-268).
Springer Netherlands.
Based on case contributed by Florian Schwertfirm, Kreuzinger und Manhart Turbulenz GmbH.
Provides efficient integration of complex laminar reaction chemistry,
combining the advantages of automatic dynamic specie and reaction
reduction with ISAT (in situ adaptive tabulation). The advantages grow
as the complexity of the chemistry increases.
References:
Contino, F., Jeanmart, H., Lucchini, T., & D’Errico, G. (2011).
Coupling of in situ adaptive tabulation and dynamic adaptive chemistry:
An effective method for solving combustion in engine simulations.
Proceedings of the Combustion Institute, 33(2), 3057-3064.
Contino, F., Lucchini, T., D'Errico, G., Duynslaegher, C.,
Dias, V., & Jeanmart, H. (2012).
Simulations of advanced combustion modes using detailed chemistry
combined with tabulation and mechanism reduction techniques.
SAE International Journal of Engines,
5(2012-01-0145), 185-196.
Contino, F., Foucher, F., Dagaut, P., Lucchini, T., D’Errico, G., &
Mounaïm-Rousselle, C. (2013).
Experimental and numerical analysis of nitric oxide effect on the
ignition of iso-octane in a single cylinder HCCI engine.
Combustion and Flame, 160(8), 1476-1483.
Contino, F., Masurier, J. B., Foucher, F., Lucchini, T., D’Errico, G., &
Dagaut, P. (2014).
CFD simulations using the TDAC method to model iso-octane combustion
for a large range of ozone seeding and temperature conditions
in a single cylinder HCCI engine.
Fuel, 137, 179-184.
Two tutorial cases are currently provided:
+ tutorials/combustion/chemFoam/ic8h18_TDAC
+ tutorials/combustion/reactingFoam/laminar/counterFlowFlame2D_GRI_TDAC
the first of which clearly demonstrates the advantage of dynamic
adaptive chemistry providing ~10x speedup,
the second demonstrates ISAT on the modest complex GRI mechanisms for
methane combustion, providing a speedup of ~4x.
More tutorials demonstrating TDAC on more complex mechanisms and cases
will be provided soon in addition to documentation for the operation and
settings of TDAC. Also further updates to the TDAC code to improve
consistency and integration with the rest of OpenFOAM and further
optimize operation can be expected.
Original code providing all algorithms for chemistry reduction and
tabulation contributed by Francesco Contino, Tommaso Lucchini, Gianluca
D’Errico, Hervé Jeanmart, Nicolas Bourgeois and Stéphane Backaert.
Implementation updated, optimized and integrated into OpenFOAM-dev by
Henry G. Weller, CFD Direct Ltd with the help of Francesco Contino.
Description
Constrain the field values within a specified region.
For example to set the turbulence properties within a porous region:
\verbatim
porosityTurbulence
{
type scalarFixedValueConstraint;
active yes;
scalarFixedValueConstraintCoeffs
{
selectionMode cellZone;
cellZone porosity;
fieldValues
{
k 30.7;
epsilon 1.5;
}
}
}
\endverbatim
See tutorials/compressible/rhoSimpleFoam/angledDuctExplicitFixedCoeff
constant/fvOptions for an example of this fvOption in action.
The modes of operation are set by the dimensions of the pressure field
to which this boundary condition is applied, the \c psi entry and the value
of \c gamma:
\table
Mode | dimensions | psi | gamma
incompressible subsonic | p/rho | |
compressible subsonic | p | none |
compressible transonic | p | psi | 1
compressible supersonic | p | psi | > 1
\endtable
For most applications the totalPressure boundary condition now only
requires p0 to be specified e.g.
outlet
{
type totalPressure;
p0 uniform 1e5;
}
Added the option '-subDict' to specify a sub-dictionary if multiple
replacement sets are present in the same file. This also provides
backward compatibility by setting '-subDict dictionaryReplacement'
To re-use existing 'sampleDict' files simply add the following entries:
type sets;
libs ("libsampling.so");
and run
postProcess -func sampleDict
It is probably better to also rename 'sampleDict' -> 'sample' and then run
postProcess -func sampleDict
The use of the term 'source' in the context of post-processing is
confusing and does not properly describe the process of region
selection. The new names 'surfaceRegion' and 'volRegion' better
describe the purpose of the functionObjects which is to provide field
processing functionality limited to a specified region of space, either
a surface or volume.
The keyword 'source' is renamed 'regionType' which better describes the
purpose which is to specify the method by which the surface or volume
region is selected.
The keyword to select the name of the surface or volume region is
renamed from 'sourceName' to 'name' consistent with the other
name-changes above.
e.g.
functions
{
#includeFunc mag(U)
}
executes 'mag' on the field 'U' writing the field 'mag(U)'.
The equivalent post-processing command is
postProcess -func 'mag(U)'
with the more general and flexible 'postProcess' utility and '-postProcess' solver option
Rationale
---------
Both the 'postProcess' utility and '-postProcess' solver option use the
same extensive set of functionObjects available for data-processing
during the run avoiding the substantial code duplication necessary for
the 'foamCalc' and 'postCalc' utilities and simplifying maintenance.
Additionally consistency is guaranteed between solver data processing
and post-processing.
The functionObjects have been substantially re-written and generalized
to simplify development and encourage contribution.
Configuration
-------------
An extensive set of simple functionObject configuration files are
provided in
OpenFOAM-dev/etc/caseDicts/postProcessing
and more will be added in the future. These can either be copied into
'<case>/system' directory and included into the 'controlDict.functions'
sub-dictionary or included directly from 'etc/caseDicts/postProcessing'
using the '#includeEtc' directive or the new and more convenient
'#includeFunc' directive which searches the
'<etc>/caseDicts/postProcessing' directories for the selected
functionObject, e.g.
functions
{
#includeFunc Q
#includeFunc Lambda2
}
'#includeFunc' first searches the '<case>/system' directory in case
there is a local configuration.
Description of #includeFunc
---------------------------
Specify a functionObject dictionary file to include, expects the
functionObject name to follow (without quotes).
Search for functionObject dictionary file in
user/group/shipped directories.
The search scheme allows for version-specific and
version-independent files using the following hierarchy:
- \b user settings:
- ~/.OpenFOAM/\<VERSION\>/caseDicts/postProcessing
- ~/.OpenFOAM/caseDicts/postProcessing
- \b group (site) settings (when $WM_PROJECT_SITE is set):
- $WM_PROJECT_SITE/\<VERSION\>/caseDicts/postProcessing
- $WM_PROJECT_SITE/caseDicts/postProcessing
- \b group (site) settings (when $WM_PROJECT_SITE is not set):
- $WM_PROJECT_INST_DIR/site/\<VERSION\>/caseDicts/postProcessing
- $WM_PROJECT_INST_DIR/site/caseDicts/postProcessing
- \b other (shipped) settings:
- $WM_PROJECT_DIR/etc/caseDicts/postProcessing
An example of the \c \#includeFunc directive:
\verbatim
#includeFunc <funcName>
\endverbatim
postProcess
-----------
The 'postProcess' utility and '-postProcess' solver option provide the
same set of controls to execute functionObjects after the run either by
reading a specified set of fields to process in the case of
'postProcess' or by reading all fields and models required to start the
run in the case of '-postProcess' for each selected time:
postProcess -help
Usage: postProcess [OPTIONS]
options:
-case <dir> specify alternate case directory, default is the cwd
-constant include the 'constant/' dir in the times list
-dict <file> read control dictionary from specified location
-field <name> specify the name of the field to be processed, e.g. U
-fields <list> specify a list of fields to be processed, e.g. '(U T p)' -
regular expressions not currently supported
-func <name> specify the name of the functionObject to execute, e.g. Q
-funcs <list> specify the names of the functionObjects to execute, e.g.
'(Q div(U))'
-latestTime select the latest time
-newTimes select the new times
-noFunctionObjects
do not execute functionObjects
-noZero exclude the '0/' dir from the times list, has precedence
over the -withZero option
-parallel run in parallel
-region <name> specify alternative mesh region
-roots <(dir1 .. dirN)>
slave root directories for distributed running
-time <ranges> comma-separated time ranges - eg, ':10,20,40:70,1000:'
-srcDoc display source code in browser
-doc display application documentation in browser
-help print the usage
pimpleFoam -postProcess -help
Usage: pimpleFoam [OPTIONS]
options:
-case <dir> specify alternate case directory, default is the cwd
-constant include the 'constant/' dir in the times list
-dict <file> read control dictionary from specified location
-field <name> specify the name of the field to be processed, e.g. U
-fields <list> specify a list of fields to be processed, e.g. '(U T p)' -
regular expressions not currently supported
-func <name> specify the name of the functionObject to execute, e.g. Q
-funcs <list> specify the names of the functionObjects to execute, e.g.
'(Q div(U))'
-latestTime select the latest time
-newTimes select the new times
-noFunctionObjects
do not execute functionObjects
-noZero exclude the '0/' dir from the times list, has precedence
over the -withZero option
-parallel run in parallel
-postProcess Execute functionObjects only
-region <name> specify alternative mesh region
-roots <(dir1 .. dirN)>
slave root directories for distributed running
-time <ranges> comma-separated time ranges - eg, ':10,20,40:70,1000:'
-srcDoc display source code in browser
-doc display application documentation in browser
-help print the usage
The functionObjects to execute may be specified on the command-line
using the '-func' option for a single functionObject or '-funcs' for a
list, e.g.
postProcess -func Q
postProcess -funcs '(div(U) div(phi))'
In the case of 'Q' the default field to process is 'U' which is
specified in and read from the configuration file but this may be
overridden thus:
postProcess -func 'Q(Ua)'
as is done in the example above to calculate the two forms of the divergence of
the velocity field. Additional fields which the functionObjects may depend on
can be specified using the '-field' or '-fields' options.
The 'postProcess' utility can only be used to execute functionObjects which
process fields present in the time directories. However, functionObjects which
depend on fields obtained from models, e.g. properties derived from turbulence
models can be executed using the '-postProcess' of the appropriate solver, e.g.
pisoFoam -postProcess -func PecletNo
or
sonicFoam -postProcess -func MachNo
In this case all required fields will have already been read so the '-field' or
'-fields' options are not be needed.
Henry G. Weller
CFD Direct Ltd.