This is important when LTS stepping or large Co number is used.
Updating rhoBuoyantPimpleFoam to handle closed domain for rho thermo and incompressible Eos.
Consolidating chtMultiRegionSimpleFoam and chtMultiRegionFoam pEqs to use the same formulation as rhoBuoyantPimpleFoam and
rhoBuoyantSimpleFoam
2)Adapting divU in TEqn.H for compressibleInterDyMFoam and compressibleInterFoam
3)Re-instated sixDoFRigidBodyDisplacement as patch for pointFields. It allows to use a different fvDynamincMesh type
independently of the BC's
- provides a summary hash of classes used and their associated object names.
The HashTable representation allows us to leverage various HashTable
methods. This hashed summary view can be useful when querying
particular aspects, but is most useful when reducing the objects in
consideration to a particular subset. For example,
const wordHashSet interestingTypes
{
volScalarField::typeName,
volVectorField::typeName
};
IOobjectList objects(runTime, runTime.timeName());
HashTable<wordHashSet> classes = objects.classes();
classes.retain(interestingTypes);
// Or do just the opposite:
classes.erase(unsupportedTypes);
Can also use the underlying HashTable filter methods
STYLE: use templated internals to avoid findString() when matching subsets
- Generalized means over filtering table entries based on their keys,
values, or both. Either filter (retain), or optionally prune elements
that satisfy the specified predicate.
filterKeys and filterValues:
- Take a unary predicate with the signature
bool operator()(const Key& k);
- filterEntries:
Takes a binary predicate with the signature
bool operator()(const Key& k, const T& v);
==
The predicates can be normal class methods, or provide on-the-fly
using a C++ lambda. For example,
wordRes goodFields = ...;
allFieldNames.filterKeys
(
[&goodFields](const word& k){ return goodFields.match(k); }
);
Note that all classes that can match a string (eg, regExp, keyType,
wordRe, wordRes) or that are derived from a Foam::string (eg, fileName,
word) are provided with a corresponding
bool operator()(const std::string&)
that either performs a regular expression or a literal match.
This allows such objects to be used directly as a unary predicate
when filtering any string hash keys.
Note that HashSet and hashedWordList both have the proper
operator() methods that also allow them to be used as a unary
predicate.
- Similar predicate selection with the following:
* tocKeys, tocValues, tocEntries
* countKeys, countValues, countEntries
except that instead of pruning, there is a simple logic inversion.
- predicates::always and predicates::never returning true and false,
respectively. These simple classes make it easier when writing
templated code.
As well as unary and binary predicate forms, they also contain a
match(std::string) method for compatibility with regex-based classes.
STYLE: write bool and direction as primitive 'int' not as 'label'.
- ensure that the string-related classes have consistently similar
matching methods. Use operator()(const std::string) as an entry
point for the match() method, which makes it easier to use for
filters and predicates. In some cases this will also permit using
a HashSet as a match predicate.
regExp
====
- the set method now returns a bool to signal that the requested
pattern was compiled.
wordRe
====
- have separate constructors with the compilation option (was previously
a default parameter). This leaves the single parameter constructor
explicit, but the two parameter version is now non-explicit, which
makes it easier to use when building lists.
- renamed compile-option from REGEX (to REGEXP) for consistency with
with the <regex.h>, <regex> header names etc.
wordRes
====
- renamed from wordReListMatcher -> wordRes. For reduced typing and
since it behaves as an entity only slightly related to its underlying
list nature.
- Provide old name as typedef and include for code transition.
- pass through some list methods into wordRes
hashedWordList
====
- hashedWordList[const word& name] now returns a -1 if the name is is
not found in the list of indices. That has been a pending change
ever since hashedWordList was generalized out of speciesTable
(Oct-2010).
- add operator()(const word& name) for easy use as a predicate
STYLE: adjust parameter names in stringListOps
- reflect if the parameter is being used as a primary matcher, or the
matcher will be derived from the parameter.
For example,
(const char* re), which first creates a regExp
versus (const regExp& matcher) which is used directly.
- inherit from std::iterator to obtain the full STL typedefs, meaning
that std::distance works and the following is now possible:
labelRange range(100, 1500);
scalarList list(range.begin(), range.end());
--
Note that this does not work (mismatched data-types):
scalarList list = identity(12345);
But this does, since the *iter promotes label to scalar:
labelList ident = identity(12345);
scalarList list(ident.begin(), ident.end());
It is however more than slightly wasteful to create a labelList
just for initializing a scalarList. An alternative could be a
a labelRange for the same purpose.
labelRange ident = labelRange::identity(12345);
scalarList list(ident.begin(), ident.end());
Or this
scalarList list
(
labelRange::null.begin(),
labelRange::identity(12345).end()
);
- provides const/non-const access to the underlying list, but the
iterator access itself is const.
- provide linked-list iterator 'found()' method for symmetry with
hash-table iterators. Use nullptr for more clarity.
- lookup(): with a default value (const access)
For example,
Map<label> something;
value = something.lookup(key, -1);
being equivalent to the following:
Map<label> something;
value = -1; // bad value
if (something.found(key))
{
value = something[key];
}
except that lookup also makes it convenient to handle const references.
Eg,
const labelList& ids = someHash.lookup(key, labelList());
- For consistency, provide a two parameter HashTable '()' operator.
The lookup() method is, however, normally preferable when
const-only access is to be ensured.
- retain(): the counterpart to erase(), it only retains entries
corresponding to the listed keys.
For example,
HashTable<someType> largeCache;
wordHashSet preserve = ...;
largeCache.retain(preserve);
being roughly equivalent to the following two-stage process,
but with reduced overhead and typing, and fewer potential mistakes.
HashTable<someType> largeCache;
wordHashSet preserve = ...;
{
wordHashSet cull(largeCache.toc()); // all keys
cull.erase(preserve); // except those to preserve
largeCache.erase(cull); //
}
The HashSet &= operator and retain() are functionally equivalent,
but retain() also works with dissimilar value types.
- less clutter and typing to use the default template parameter when
the key is 'word' anyhow.
- use EdgeMap instead of the longhand HashTable version where
appropriate
- the heuristic for matching unresolved intersections is a relatively
simple matching scheme that seems to be more robust than attempting to walk
the geometry or the cuts.
- avoid false positives for self intersection
- provide key_iterator/const_key_iterator for all hashes,
reuse directly for HashSet as iterator/const_iterator, respectively.
- additional keys() method for HashTable that returns a wrapped to
a pair of begin/end const_iterators with additional size/empty
information that allows these to be used directly by anything else
expecting things with begin/end/size. Unfortunately does not yet
work with std::distance().
Example,
for (auto& k : labelHashTable.keys())
{
...
}
- previously had a mismash of const/non-const attributes on iterators
that were confused with the attributes of the object being accessed.
- use the iterator keys() and object() methods consistently for all
internal access of the HashTable iterators. This makes the intention
clearer, the code easier to maintain, and protects against any
possible changes in the definition of the operators.
- 'operator*': The standard form expected by STL libraries.
However, for the std::map, this dereferences to a <key,value> pair,
whereas OpenFOAM dereferences simply to <value>.
- 'operator()': OpenFOAM treats this like the 'operator*'
- adjusted the values of end() and cend() to reinterpret from nullObject
instead of returning a static iteratorEnd() object.
This means that C++ templates can now correctly deduce and match
the return types from begin() and end() consistently.
So that range-based now works.
Eg,
HashTable<label> table1 = ...;
for (auto i : table1)
{
Info<< i << endl;
}
Since the 'operator*' returns hash table values, this prints all the
values in the table.
This uses a concept similar to what std::valarray and std::slice do.
A labelRange provides a convenient container for holding start/size
and lends itself to addressing 'sliced' views of lists.
For safety, the operations and constructors restricts the given input range
to a valid addressible region of the underlying list, while the labelRange
itself precludes negative sizes.
The SubList version is useful for patches or other things that have a
SubList as its parameter. Otherwise the UList [] operator will be the
more natural solution. The slices can be done with a labelRange, or
a {start,size} pair.
Examples,
labelList list1 = identity(20);
list1[labelRange(18,10)] = -1;
list1[{-20,25}] = -2;
list1[{1000,5}] = -3;
const labelList list2 = identity(20);
list2[{5,10}] = -3; // ERROR: cannot assign to const!
Provides the additional compression necessary to ensure interface integrity
adjacent to a boundary at a low angle of incidence to the interface. This is
particularly important when simulating planing hulls.
Updated the tetrahedron and triangle classes to use the barycentric
primitives. Removed duplicate code for generating random positions in
tets and tris, and fixed bug in tri random position.
- some functionality similar to what the standary library <iterator>
provides.
* stdFoam::begin() and stdFoam::end() do type deduction,
which means that many cases it is possible to manage these types
of changes.
For example, when managing a number of indices:
Map<labelHashSet> lookup;
1) Longhand:
for
(
Map<labelHashSet>::const_iterator iter = lookup.begin();
iter != lookup.end();
++iter
)
{ .... }
1b) The same, but wrapped via a macro:
forAllConstIter(Map<labelHashSet>, lookup, iter)
{ .... }
2) Using stdFoam begin/end templates directly
for
(
auto iter = stdFoam::begin(lookup);
iter != stdFoam::end(lookup);
++iter
)
{ .... }
2b) The same, but wrapped via a macro:
forAllConstIters(lookup, iter)
{ .... }
Note that in many cases it is possible to simply use a range-based for.
Eg,
labelList myList;
for (auto val : myList)
{ ... }
for (const auto& val : myList)
{ ... }
These however will not work with any of the OpenFOAM hash-tables,
since the standard C++ concept of an iterator would return a key,value
pair when deferencing the *iter.
The deduction methods also exhibits some slightly odd behaviour with
some PtrLists (needs some more investigation).
- make construct from UList explicit and provide corresponding
assignment operator.
- add construct,insert,set,assignment from FixedList.
This is convenient when dealing with things like edges or triFaces.
- explicitly mention the value-initialized status for the operator().
This means that the following code will properly use an initialized
zero.
HashTable<label> regionCount;
if (...)
regionCount("region1")++;
... and also this;
if (regionCount("something") > 0)
{
...
}
Note that the OpenFOAM HashTable uses operator[] to provide read and
write access to *existing* entries and will provoke a FatalError if
the entry does not exist.
The operator() provides write access to *existing* entries or will
create the new entry as required.
The STL hashes use operator[] for this purpose.
- more hash-like methods.
Eg, insert/erase via lists, clear(), empty(),...
- minVertex(), maxVertex() to return the smallest/largest label used
- improved documentation, more clarification about where/how negative
point labels are treated.
now possible with level-sets as well as planes. Removed tetPoints class
as this wasn't really used anywhere except for the old tet-cutting
routines. Restored tetPointRef.H to be consistent with other primitive
shapes. Re-wrote tet-overlap mapping in terms of the new cutting.
terms of the local barycentric coordinates of the current tetrahedron,
rather than the global coordinate system.
Barycentric tracking works on any mesh, irrespective of mesh quality.
Particles do not get "lost", and tracking does not require ad-hoc
"corrections" or "rescues" to function robustly, because the calculation
of particle-face intersections is unambiguous and reproducible, even at
small angles of incidence.
Each particle position is defined by topology (i.e. the decomposed tet
cell it is in) and geometry (i.e. where it is in the cell). No search
operations are needed on restart or reconstruct, unlike when particle
positions are stored in the global coordinate system.
The particle positions file now contains particles' local coordinates
and topology, rather than the global coordinates and cell. This change
to the output format is not backwards compatible. Existing cases with
Lagrangian data will not restart, but they will still run from time
zero without any modification. This change was necessary in order to
guarantee that the loaded particle is valid, and therefore
fundamentally prevent "loss" and "search-failure" type bugs (e.g.,
2517, 2442, 2286, 1836, 1461, 1341, 1097).
The tracking functions have also been converted to function in terms
of displacement, rather than end position. This helps remove floating
point error issues, particularly towards the end of a tracking step.
Wall bounded streamlines have been removed. The implementation proved
incompatible with the new tracking algorithm. ParaView has a surface
LIC plugin which provides equivalent, or better, functionality.
Additionally, bug report <https://bugs.openfoam.org/view.php?id=2517>
is resolved by this change.
- previous only checked for clouds at the last instance and only
detected lagrangian fields from the first cloud.
Now check for clouds at all instances and detect all of their fields
as well.
- The logic for switching input-mode was previously completely
encapsulated within the #inputMode directive, but without any
programming equivalent. Furthermore, the encapsulation in inputMode
made the logic less clear in other places.
Exposing the inputMode as an enum with direct access from entry
simplifies things a fair bit.
- eliminate one level of else/if nesting in entryIO.C for clearer logic
- for dictionary function entries, simply use
addNamedToMemberFunctionSelectionTable() and avoid defining a type()
as a static. For most function entries the information is only used
to get a name for the selection table lookup anyhow.
- consolidate word::validated() into word::validate() and also allow
as short form for string::validate<word>(). Also less confusing than
having similarly named methods that essentially do the same thing.
- more consistent const access when iterating over strings
- add valid(char) for keyType and wordRe
- error::throwExceptions(bool) returning the previous state makes it
easier to set and restore states.
- throwing() method to query the current handling (if required).
- the normal error::throwExceptions() and error::dontThrowExceptions()
also return the previous state, to make it easier to restore later.
- resets the output buffer completely - implementing what rewind was
likely meant to have accomplished for many use cases.
STYLE: OSHA1stream reset() for symmetry. Deprecate rewind().
- use allocator class to wrap the stream pointers instead of passing
them into ISstream, OSstream and using a dynamic cast to delete
then. This is especially important if we will have a bidirectional
stream (can't delete twice!).
STYLE:
- file stream constructors with std::string (C++11)
- for rewind, explicit about in|out direction. This is not currently
important, but avoids surprises with any future bidirectional access.
- combined string streams in StringStream.H header.
Similar to <sstream> include that has both input and output string
streams.
- added an explicit print, but only report profiling to the log
file from master process.
We don't wish to overwrite any profiling that was conducted during
the simulation. Besides which, we don't have a proper Time object
for handling the write nicely either.
- allows configuration without an environment variable.
For compatibility still respect FOAM_SIGFPE and FOAM_SETNAN
env-variables
- The env-variables are now treated as true/false switch values.
Previously there was just a check for env exists or not, but this
can be fairly fragile for a user's environment.
- adjust for updates in 'develop'
- change surfaceIntersection constructor to take a dictionary of
options.
tolerance | Edge-length tolerance | scalar | 1e-3
allowEdgeHits | Edge-end cuts another edge | bool | true
avoidDuplicates | Reduce the number of duplicate points | bool | true
warnDegenerate | Number of warnings about degenerate edges | label | 0
- cannot use comparison of list sizes. Okay for UList, but not here.
STYLE:
- don't need two iterators for the '<' comparison, can just access
internal storage directly
- The existing ':' anchor works for rvalue substitutions
(Eg, ${:subdict.name}), but fails for lvalues, since it is
a punctuation token and parse stops there.
- support edge-ordering on construction, and additional methods:
- sort(), sorted(), unitVec(), collapse()
- null constructor initializes with -1, for consistency with face,
triFace and since it is generally much more useful that way.
- add some methods that allow edges to used somewhat more like hashes.
- count(), found(), insert(), erase()
Here is possible way to use that:
edge someEdge; // initializes with '-1' for both entries
if (someEdge.insert(pt1))
{
// added a new point label
}
... later
// unmark point on edge
someEdge.erase(pt2);
--
STYLE:
- use UList<point> instead of pointField for edge methods for flexibility.
The pointField include is retained, however, since many other routines
may be relying on it being included via edge.H
except turbulence and lagrangian which will also be updated shortly.
For example in the nonNewtonianIcoFoam offsetCylinder tutorial the viscosity
model coefficients may be specified in the corresponding "<type>Coeffs"
sub-dictionary:
transportModel CrossPowerLaw;
CrossPowerLawCoeffs
{
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
}
BirdCarreauCoeffs
{
nu0 [0 2 -1 0 0 0 0] 1e-06;
nuInf [0 2 -1 0 0 0 0] 1e-06;
k [0 0 1 0 0 0 0] 0;
n [0 0 0 0 0 0 0] 1;
}
which allows a quick change between models, or using the simpler
transportModel CrossPowerLaw;
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
if quick switching between models is not required.
To support this more convenient parameter specification the inconsistent
specification of seedSampleSet in the streamLine and wallBoundedStreamLine
functionObjects had to be corrected from
// Seeding method.
seedSampleSet uniform; //cloud; //triSurfaceMeshPointSet;
uniformCoeffs
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
to the simpler
// Seeding method.
seedSampleSet
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
which also support the "<type>Coeffs" form
// Seeding method.
seedSampleSet
{
type uniform;
uniformCoeffs
{
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
}
- use InfoSwitch to disable, or via static method.
- respect the state of the argList banner when deciding to emit
initialization information. Can otherwise end up with unwanted
output rubbish on things like foamDictionary and foamListTimes.
Main changes in the tutorial:
- General cleanup of the phaseProperties of unnecessary entries
- sensibleEnthalpy is used for both phases
- setTimeStep functionObject is used to set a sharp reduction in time step near the start of the injection
- Monitoring of pressure minimum and maximum
Patch contributed by Juho Peltola, VTT.
- If the dictionary is named 'surfaces', a 'surfaces' entry is mandatory.
This is a list of wordRe, which is used to load multiple surfaces from
constant/triSurface directory.
- Other dictionaries may contain a 'surfaces' entry.
In which case the behaviour is as above (loading multiple surfaces).
The dictionary name will *NOT* be taken as a surface name itself.
- Regardless of how the surfaces are loaded or features extracted,
an additional selfIntersection test may be used.
Eg,
surfaces
{
extractionMethod extractFromSurface;
surfaces (surface1.stl surface2.nas);
// Generate features from self-intersect
selfIntersection true;
// Base output name (optiona)
output surfaces;
// Tolerance for self-intersect
planarTolerance 1e-3;
extractFromSurfaceCoeffs
{
includedAngle 120;
// Do not mark region edges
geometricTestOnly yes;
}
}
- was generally somewhat fragile. The main problem stems from the fact
that several interfaces may be attached to a boundary. No trivial
means of solving this without too much work for a feature that is only
"nice-to-have".
- the NamedEnum wrapper is somewhate too rigid.
* All enumerated values are contiguous, starting as zero.
* The implicit one-to-one mapping precludes using it for aliases.
* For example, perhaps we want to support alternative lookup names for an
enumeration, or manage an enumeration lookup for a sub-range.
- Remove the unused enums() method since it delivers wholly unreliable
results. It is not guaranteed to cover the full enumeration range,
but only the listed names.
- Remove the unused strings() method.
Duplicated functionality of the words(), but was never used.
- Change access of words() method from static to object.
Better code isolation. Permits the constructor to take over
as the single point of failure for bad input.
- Add values() method
- do not expose internal (HashTable) lookup since it makes it more
difficult to enforce constness and the implementation detail should
not be exposed. However leave toc() and sortedToc() for the interface.
STYLE: relocated NamedEnum under primitives (was containers)
- internal typedef as 'value_type' for some consistency with STL conventions
- The unset() method never auto-vivifies, whereas the set() method
always auto-vivifies. In the case where set() is called with a zero
for its argument - eg, set(index, 0) - this should behave
identically to an unset() and not auto-vivify out-of-range entries.
- This can be used as a convenient alternative to comparing against end().
Eg,
dictionaryConstructorTable::iterator cstrIter =
dictionaryConstructorTablePtr_->find(methodType);
if (cstrIter.found())
{
...
}
vs.
if (cstrIter != dictionaryConstructorTablePtr_->end())
{
...
}
The standard naming convention for heat flux is "q" and this is used for the
conductive and convective heat fluxes is OpenFOAM. The use of "Qr" for
radiative heat flux is an anomaly which causes confusion, particularly for
boundary conditions in which "Q" is used to denote power in Watts. The name of
the radiative heat flux has now been corrected to "qr" and all models, boundary
conditions and tutorials updated.
Description
Temperature-dependent surface tension model in which the surface tension
function provided by the phase Foam::liquidProperties class is used.
Usage
\table
Property | Description | Required | Default value
phase | Phase name | yes |
\endtable
Example of the surface tension specification:
\verbatim
sigma
{
type liquidProperties;
phase water;
}
\endverbatim
for use with e.g. compressibleInterFoam, see
tutorials/multiphase/compressibleInterFoam/laminar/depthCharge2D
- just check WM_PROJECT_DIR instead.
- provide a fallback value when FOAM_EXT_LIBBIN might actually be needed.
Only strictly need FOAM_EXT_LIBBIN for scotch/metis decomposition, and
when these are actually supplied by ThirdParty.
All other ThirdParty dependencies are referenced by BOOST_ARCH_PATH etc.
Can therefore drop the FOAM_EXT_LIBBIN dependency for VTK-related
things, which do not use scotch/metis anyhow.
- this implies that jobControl is a user-resource for OpenFOAM.
It was previously located under $WM_PROJECT_INST_DIR/jobControl,
but few users will have write access there.
- an unset FOAM_JOB_DIR variable is treated as "~/.OpenFOAM/jobControl",
which can partially reduce environment clutter.
- provide argList::noJobInfo() to conveniently suppress job-info on an
individual basis for short-running utilities (eg, foamListTimes) to
avoid unneeded clutter.
These models have been particularly designed for use in the VoF solvers, both
incompressible and compressible. Currently constant and temperature dependent
surface tension models are provided but it easy to write models in which the
surface tension is evaluated from any fields held by the mesh database.
- ensure proper and sensible handling of empty names.
Eg, isDir(""), isFile("") are no-ops, and avoid file-stat
- rmDir:
* optional 'silent' option to suppress messages.
* removes all possible sub-entries, instead of just giving up on
the first problem encountered.
- reduced code duplication in etcFiles
ENH: provide WM_USER_RESOURCE_DIRNAME define (in foamVersion.H)
- this is still a hard-coded value, but at least centrally available
Created a base-class from contactAngleForce from which the
distributionContactAngleForce (for backward compatibility) and the new
temperatureDependentContactAngleForce are derived:
Description
Temperature dependent contact angle force
The contact angle in degrees is specified as a \c Function1 type, to
enable the use of, e.g. contant, polynomial, table values.
See also
Foam::regionModels::surfaceFilmModels::contactAngleForce
Foam::Function1Types
SourceFiles
temperatureDependentContactAngleForce.C
e.g.
ramp
{
type quadratic;
start 200;
duration 1.6;
}
but the old format is supported for backward compatibility:
ramp linear;
rampCoeffs
{
start 200;
duration 1.6;
}
Using
decomposePar -copyZero
The mesh is decomposed as usual but the '0' directory is recursively copied to
the 'processor.*' directories rather than decomposing the fields. This is a
convenient option to handle cases where the initial field files are generic and
can be used for serial or parallel running. See for example the
incompressible/simpleFoam/motorBike tutorial case.
Both stardard SIMPLE and the SIMPLEC (using the 'consistent' option in
fvSolution) are now supported for both subsonic and transonic flow of all
fluid types.
rhoPimpleFoam now instantiates the lower-level fluidThermo which instantiates
either a psiThermo or rhoThermo according to the 'type' specification in
thermophysicalProperties, see also commit a1c8cde310
Both stardard SIMPLE and the SIMPLEC (using the 'consistent' option in
fvSolution) are now supported for both subsonic and transonic flow of all
fluid types.
- the purpose is more explicit, without needing to check documentation
about what the bool parameter means.
STYLE: improve formatting of fileName documentation
- these are suitable for use with lambda functions.
- Deprecate the unused 3-parameter version of subset/inplaceSubset.
- Deprecate initList and initListList in favour of initializer_list
STYLE: adjust some comments, remove dead code in regionSizeDistribution.C
rhoSimpleFoam now instantiates the lower-level fluidThermo which instantiates
either a psiThermo or rhoThermo according to the 'type' specification in
thermophysicalProperties, e.g.
thermoType
{
type hePsiThermo;
mixture pureMixture;
transport sutherland;
thermo janaf;
equationOfState perfectGas;
specie specie;
energy sensibleInternalEnergy;
}
instantiates a psiThermo for a perfect gas with JANAF thermodynamics, whereas
thermoType
{
type heRhoThermo;
mixture pureMixture;
properties liquid;
energy sensibleInternalEnergy;
}
mixture
{
H2O;
}
instantiates a rhoThermo for water, see new tutorial
compressible/rhoSimpleFoam/squareBendLiq.
In order to support complex equations of state the pressure can no longer be
unlimited and rhoSimpleFoam now limits the pressure rather than the density to
handle start-up more robustly.
For backward compatibility 'rhoMin' and 'rhoMax' can still be used in the SIMPLE
sub-dictionary of fvSolution which are converted into 'pMax' and 'pMin' but it
is better to set either 'pMax' and 'pMin' directly or use the more convenient
'pMinFactor' and 'pMinFactor' from which 'pMax' and 'pMin' are calculated using
the fixed boundary pressure or reference pressure e.g.
SIMPLE
{
nNonOrthogonalCorrectors 0;
pMinFactor 0.1;
pMaxFactor 1.5;
transonic yes;
consistent yes;
residualControl
{
p 1e-3;
U 1e-4;
e 1e-3;
"(k|epsilon|omega)" 1e-3;
}
}