- include constant/faMesh cleanup (cleanFaMesh) as part of standard
cleanCase
- simplify cleanPolyMesh function to now just warn about old
constant/polyMesh/blockMeshDict but not try to remove anything
- cleanup cellDist.vtu (decomposePar -dry-run) as well
ENH: foamRunTutorials - fallback to Allrun-parallel, Allrun-serial
TUT: call m4 with file argument instead of redirected stdin
TUT: adjust suffixes on decomposeParDict variants
- can specify rotations that are not "axes" in a compact form:
transform
{
origin (0 0 0);
rotation none;
}
transform
{
origin (0 0 0);
rotation axisAngle;
axis (0 0 1);
angle 45;
}
An expanded dictionary form also remains possible:
transform
{
origin (0 0 0);
rotation
{
type axisAngle;
axis (0 0 1);
angle 45;
}
}
STYLE: verbose deprecation for "coordinateRotation" keyword
- the "coordinateRotation" keyword was replaced by the "rotation"
keyword (OpenFOAM-v1812 and later) but was handled silently.
Now elevated to non-silent.
STYLE: alias lookups "axesRotation", "EulerRotation", "STARCDRotation"
- these warn and report the equivalent short form, which aids in
upgrading. Previously had silent lookups.
- can be more intuitive to specify for some cases:
rotation
{
type euler;
order rollPitchYaw;
angles (0 20 45);
}
- refactor starcd rotation to reuse Euler ZXY ordering
(code reduction)
ENH: add -rotate-x, -rotate-y, -rotate-z for transformPoints etc
- easier to specify for simple rotations
Two problems:
- flipping inside snappyHexMesh is not done in a parallel
consistent way. So e.g. the octree-cached inside/outside information
has already been calculated. For now flipping of
distributedTriSurfaceMesh is disabled.
- octree-cached inside/outside information was using already
cached information and would only work for outwards pointing
volumes
- can now specify sampled sets as dictionary entries instead of a list
entry.
can now use: sets { ... }
instead of: sets ( ... );
This is similar to sampled surfaces and makes it easier to
manage with dictionary manipulation tools.
TUT: update to use writeTime instead of outputTime
Automatic hole closure:
- introduces 'holeToFace' topoSet source
- used when detecting a 'leak-path'
- creates additional baffles to close the leak
Multi-stage layer addition:
- Can add layers in multiple passes
See issues: #2403, #2404
- override casename, procesorCase flags to guarantee reconstructed
case to be written to the undecomposed directory
- alternative is to construct a Zero mesh on the undecomposed
runTime and add all other bits to that but that has not been
pursued
This adds a 'geometry' scheme section to the system/fvSchemes:
geometry
{
type highAspectRatio;
}
These 'fvGeometryMethod's are used to calculate
- deltaCoeffs
- nonOrthoCoeffs
etc and can even modify the basic face/cellCentres calculation.
- code reduction, documentation, code stubs for spheroid (#1901)
- make searchableSurfaceCollection available as 'collection'
for consistency with other objects
Allows specification of extrusion path using blockMesh 'edges' syntax.
See tutorials/mesh/extrudeMesh/polyline
Contribution by Ivor Clifford/Paul Scherrer Institut
- in most cases this eliminates manually calculation of circumferential
points.
TUT: improve parameterization of sphere blockMeshDict
- allow separate parameterization of radius, ratio of inner to outer,
and the number of divisions in x/y/z and radial directions
- use simpler decomposeParDict in tutorials, several had old
'boilerplate' decomposeParDict
- use simpler libs () format
- update surface sampling to use dictionary format
The final leak can only be decided once all cells have been
deleted. So only exit on final invocation and give warning-only
beforehand. This avoids a lot of false positives.
The tutorial itself didn't actually produce a mesh with leakage
with the old settings. Upped the refinement level to force it
to go through the hole in the geometry.
For a given point within a given mesh, the existing `meshWave` method gives
the orthogonal distance to a patch. In meshes with very steep terrain (e.g.
a hill of 90 [deg], this might be problematic for the fields that require
the distance to the patch associated with the terrain surface.
`directionalMeshWave` is a variant of `meshWave` distance-to-patch method,
which ignores the component in the specified direction. Can be used e.g. to
calculate the distance in the z-direction only.
TUT: add example of directionalMeshWave to mesh/moveDynamicMesh/SnakeCanyon
Requirement by CENER
Implementation by Mattijs Janssens