- an advanced feature, for example when sampling on a static patch
while some motion occurs elsewhere. [use with caution]
- If the sampled surface dictionary is modified during run-time, the
ensight file indexing for the geometry will become out of sync.
This is addressed in a subsequent commit.
Modifications to help avoid inadvertent overwriting of tutorialsTest:
- new '-force' option to overwrite existing directory
- generate a 'tutorialsTest/Alltest' script that disallows the
possibilty of self-recursion
The following three synthetic turbulence inflow boundary conditions are
examined through single-cell-domain smooth-wall plane channel flow setup:
- turbulentDFSEMInlet
- turbulentDigitalFilterInlet variant=digitalFilter
- turbulentDigitalFilterInlet variant=reducedDigitalFilter
The examinations are performed in terms of the first-/second-order turbulence
statistics provided by (Moser et al., (1999)) doi.org/10.1063/1.869966
from smooth-wall plane channel flow direct numerical simulations at Re=395.
Serial executing:
./Allrun
Parallel (decompositionMethod=scotch) executing:
./Allrunparallel
A set of libraries and executables creating a workflow for performing
gradient-based optimisation loops. The main executable (adjointOptimisationFoam)
solves the flow (primal) equations, followed by the adjoint equations and,
eventually, the computation of sensitivity derivatives.
Current functionality supports the solution of the adjoint equations for
incompressible turbulent flows, including the adjoint to the Spalart-Allmaras
turbulence model and the adjoint to the nutUSpaldingWallFunction, [1], [2].
Sensitivity derivatives are computed with respect to the normal displacement of
boundary wall nodes/faces (the so-called sensitivity maps) following the
Enhanced Surface Integrals (E-SI) formulation, [3].
The software was developed by PCOpt/NTUA and FOSS GP, with contributions from
Dr. Evangelos Papoutsis-Kiachagias,
Konstantinos Gkaragounis,
Professor Kyriakos Giannakoglou,
Andy Heather
and contributions in earlier version from
Dr. Ioannis Kavvadias,
Dr. Alexandros Zymaris,
Dr. Dimitrios Papadimitriou
[1] A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, and C. Othmer.
Continuous adjoint approach to the Spalart-Allmaras turbulence model for
incompressible flows. Computers & Fluids, 38(8):1528–1538, 2009.
[2] E.M. Papoutsis-Kiachagias and K.C. Giannakoglou. Continuous adjoint methods
for turbulent flows, applied to shape and topology optimization: Industrial
applications. 23(2):255–299, 2016.
[3] I.S. Kavvadias, E.M. Papoutsis-Kiachagias, and K.C. Giannakoglou. On the
proper treatment of grid sensitivities in continuous adjoint methods for shape
optimization. Journal of Computational Physics, 301:1–18, 2015.
Integration into the official OpenFOAM release by OpenCFD
Integration of VOF MULES new interfaces. Update of VOF solvers and all instances
of MULES in the code.
Integration of reactingTwoPhaseEuler and reactingMultiphaseEuler solvers and sub-models
Updating reactingEuler tutorials accordingly (most of them tested)
New eRefConst thermo used in tutorials. Some modifications at thermo specie level
affecting mostly eThermo. hThermo mostly unaffected
New chtMultiRegionTwoPhaseEulerFoam solver for quenching and tutorial.
Phases sub-models for reactingTwoPhaseEuler and reactingMultiphaseEuler were moved
to src/phaseSystemModels/reactingEulerFoam in order to be used by BC for
chtMultiRegionTwoPhaseEulerFoam.
Update of interCondensatingEvaporatingFoam solver.
- reduces some dictionary clutter and probably looks less confusing
than having an ending that may not correspond to the current OS.
Eg, "fvOptions" instead of "libfvOptions.so", "libfvOptions.dylib" ...
- convenience dlOpen method for multiple files
- number of particles per parcel info to kinematic cloud
- added turbulent dispersion to basicHeterogeneousReactingParcel
- corrected dhsTrans in MUCSheterogeneousRate::calculate
- added cloud macro system to reactingParcelFoam and fixed calculation
of average particles per parcel
- added progress variable dimension to reacting model (nF)
- added ReactingHeterogeneous tutorial
ENH: Several modifycations to avoid erroneuos rays to be shot
from wrong faces.
ENH: Updating tutorials and avoiding registration of the
coarse singleCellFvMesh
Adding solarLoad tutorial case simpleCarSolarPanel
ENH: Changes needed for the merge
Adding reflecting fluxes to Solar load radiation model.
Adding functionality to the boundary radiation models and new
place holder for basic wall types such as transparent, opaqueDiffusive,
opaqueReflective,etc.
Changing radiation wall models to run time selectable.
Adding multi-band capabilities to VF model and improving the set up
for using solar loads in VF and fvDOM radiation models.
- normally findInstance will 'bottom out' with the constant directory
while doing its reverse time search. This mechanism however fails
when searching for negative start values (if there are none in the
list). Add additional logic for this so that constant will also be
used in these situations.
Note: to have decomposePar work for all times, may need the -constant option
to trigger the proper time list.
- While a rectilinear mesh can be created with blockMesh, not every mesh
created with blockMesh will satisfy the requirements for being a
rectilinear mesh.
This alternative to blockMesh uses a single block that is aligned
with the xy-z directions and specifications of the control points,
mesh divisions and expansion ratios. For example,
x
{
points ( -13.28 -0.10 6.0 19.19 );
nCells ( 10 12 10 );
ratios ( 0.2 1 5 );
}
y { ... }
z { ... }
With only one block, the boundary patch definition is simple and the
canonical face number is used directly. For example,
inlet
{
type patch;
faces ( 0 );
}
outlet
{
type patch;
faces ( 1 );
}
sides
{
type patch;
faces ( 2 3 );
}
...
- After a mesh is defined, it is trivial to retrieve mesh-related
information such as cell-volume, cell-centres for any i-j-k location
without an actual polyMesh.
STYLE: remove -noFunctionObjects from blockMesh
- no time loop, so function objects cannot be triggered anyhow.
- Extended runTimePostProcessing to include access to "live"
simulation objects such a geometry patches and sampled surfaces
stored on the "functionObjectObjects" registry.
- Add 'live' runTimePostProcessing of cloud data.
Extracts position and fields from the cloud via its objectRegistry writer
- For the "live" simulation objects, there are two new volume filters
that work directly with the OpenFOAM volume fields:
* iso-surface
* cutting planes
Both use the VTK algorithms directly and support multiple values.
Eg, can make multiple iso-levels or multiple planes parallel to each
other.
- When VTK has been compiled with MPI-support, parallel rendering will
be used.
- Additional title text properties (shadow, italic etc)
- Simplified handling of scalar-bar and visibility switches
- Support multiple text positions. Eg, for adding watermark text.
- fits better into the general sampling framework, improves flexibilty
and allows code reduction.
ENH: include surface fields on sampledSurfaces that support it
- implemented as lazy evaluation with an additional update() method.
This avoids unnecessary changes until the values are actually
required.
- apply mesh motion changes for momentum, volFieldValue,
specieReactionRates function objects
- changed the sectorCoeffs keyword to 'point' from 'axisPt'
for more similarity with other dictionaries.
Continue to accept 'axisPt' for compatibility.
- the utility had automatic triangulation removed some time ago, but
never changed its name.
- catch old uses with a surfaceMeshTriangulate deprecated script
- this corresponds to 'never match', which may be useful in combination
with -constant selection.
Eg,
surfaceMeshTriangulate -constant -time none
selects only the constant entry and suppresses any automatic time loop
STYLE: adjust help for the standard -times option
- indicate that times can be comma or space separated, since this is
otherwise not apparent. Don't mention semicolon separators in the help
since that just adds even more clutter.
- support .vtp format for geometry, surface, line, cloud.
- use native reader for handling vtk, vtp, obj, stl surface files.
For other formats, use the MeshedSurface (the surfMesh lib) to
handle reading and Foam::vtk::Tools::Patch to handle the
conversion to vtkPolyData. This combination is more memory efficient.
- update tutorial case to include vtp surface geometry
- this allows more use of the runTimePostProcessing functionObject
that will fail more gracefully if the proper version could not be
built.
The dummy functionObject simply emits a message that it is not available.
- makes the intent clearer and avoids the need for additional
constructor casting. Eg,
labelList(10, Zero) vs. labelList(10, 0)
scalarField(10, Zero) vs. scalarField(10, scalar(0))
vectorField(10, Zero) vs. vectorField(10, vector::zero)
- Now also responds to the contents of the trigger file,
processing action= contents similar to used with external coupling.
Previously it only handled an action that was defined in the
dictionary. With this update, the user can chose a diferent action
simply by echoing the appropriate action string into the trigger
file.
Reports the min|max|average AMI weights to text file and optionally
writes VTK surfaces of the sum of the weights, and mask field for
ACMI patches.
Example usage:
AMIWeights
{
type AMIWeights;
libs ("libfieldFunctionObjects.so");
writeControl writeTime;
writeFields yes;
}
Reference:
Comte-Bellot, G., and Corrsin, S., "Simple Eulerian Time Correlation of
Full- and Narrow-Band Velocity Signals in Grid-Generated, 'Isotropic'
Turbulence," Journal of Fluid Mechanics, Vol. 48, No. 2, 1971,
pp. 273–337.
- Uses the user-specified value for outputTemperature:
{
type externalCoupledTemperature;
outputTemperture fluid; // or wall;
}
Otherwises uses 'wall' as a default (for compatibility) and emits a
warning.
The T.out header now reflects the type of output. Eg,
# Values: area Tfluid qDot htc