- use simpler decomposeParDict in tutorials, several had old
'boilerplate' decomposeParDict
- use simpler libs () format
- update surface sampling to use dictionary format
- Removed some unnecessary dynamicMeshDicts.
- Removed the writeActiveDesignVariables execution from the Allrun
scripts, since it is no longer necessary to execute it before
adjointOptimisationFoam.
- Updated the entries in dynamicMeshDict according to efbc9fc99.
When activeDesignVariables are not set explicitly, all design variables
are treated as active. These were allocated properly when starting from
0 but not when starting from an intermediate optimisation cycle
(e.g. running 5 optimisation cycles, stopping and restarting).
TUT: added a new tutorial including the restart of an optimisation run
to help identify future regression
The controlBoxes wordList was removed from NURBS3DVolume in the
pre-release phase but writeMorpherCPs was not updated accordingly.
TUT: added the invocation of writeMorpherCPs in one of the tutotials to
help identify future regression
The adjoint library is enhanced with new functionality enabling
automated shape optimisation loops. A parameterisation scheme based on
volumetric B-Splines is introduced, the control points of which act as
the design variables in the optimisation loop [1, 2]. The control
points of the volumetric B-Splines boxes can be defined in either
Cartesian or cylindrical coordinates.
The entire loop (solution of the flow and adjoint equations, computation
of sensitivity derivatives, update of the design variables and mesh) is
run within adjointOptimisationFoam. A number of methods to update the
design variables are implemented, including popular Quasi-Newton methods
like BFGS and methods capable of handling constraints like loop using
the SQP or constraint projection.
The software was developed by PCOpt/NTUA and FOSS GP, with contributions from
Dr. Evangelos Papoutsis-Kiachagias,
Konstantinos Gkaragounis,
Professor Kyriakos Giannakoglou,
Andy Heather
[1] E.M. Papoutsis-Kiachagias, N. Magoulas, J. Mueller, C. Othmer,
K.C. Giannakoglou: 'Noise Reduction in Car Aerodynamics using a
Surrogate Objective Function and the Continuous Adjoint Method with
Wall Functions', Computers & Fluids, 122:223-232, 2015
[2] E. M. Papoutsis-Kiachagias, V. G. Asouti, K. C. Giannakoglou,
K. Gkagkas, S. Shimokawa, E. Itakura: ‘Multi-point aerodynamic shape
optimization of cars based on continuous adjoint’, Structural and
Multidisciplinary Optimization, 59(2):675–694, 2019