- remove writeGeometry() in favour of write() and make it pure virtual
so that all writers must explicitly deal with it.
- establish proxy extension at construction time and treated as an
invariant thereafter. This avoids potentially surprising changes in
behaviour when writing.
- While a rectilinear mesh can be created with blockMesh, not every mesh
created with blockMesh will satisfy the requirements for being a
rectilinear mesh.
This alternative to blockMesh uses a single block that is aligned
with the xy-z directions and specifications of the control points,
mesh divisions and expansion ratios. For example,
x
{
points ( -13.28 -0.10 6.0 19.19 );
nCells ( 10 12 10 );
ratios ( 0.2 1 5 );
}
y { ... }
z { ... }
With only one block, the boundary patch definition is simple and the
canonical face number is used directly. For example,
inlet
{
type patch;
faces ( 0 );
}
outlet
{
type patch;
faces ( 1 );
}
sides
{
type patch;
faces ( 2 3 );
}
...
- After a mesh is defined, it is trivial to retrieve mesh-related
information such as cell-volume, cell-centres for any i-j-k location
without an actual polyMesh.
STYLE: remove -noFunctionObjects from blockMesh
- no time loop, so function objects cannot be triggered anyhow.
- The writers have changed from being a generic state-less set of
routines to more properly conforming to the normal notion of a writer.
These changes allow us to combine output fields (eg, in a single
VTK/vtp file for each timestep).
Parallel data reduction and any associated bookkeeping is now part
of the surface writers.
This improves their re-usability and avoids unnecessary
and premature data reduction at the sampling stage.
It is now possible to have different output formats on a per-surface
basis.
- A new feature of the surface sampling is the ability to "store" the
sampled surfaces and fields onto a registry for reuse by other
function objects.
Additionally, the "store" can be triggered at the execution phase
as well
- can now safely use labelList::null() instead of emptyLabelList for
return values. No special treatment required for lists.
Possible replacements:
if (notNull(list) && list.size()) -> if (list.size())
if (isNull(list) || list.empty()) -> if (list.empty())
The receiver may still wish to handle differently to distinguish
between a null list and an empty list, but no additional special
protection is required when obtaining sizes, traversing, outputting
etc.
- changed ensightOutput from a class solely comprising static methods to
a namespace and added in sub-namespaces Detail and Serial.
This makes it easier to "mix-in" functions at different levels.
Refactored and combined some serial/parallel code where possible.
The general ensightOutput namespace has now shifted to be in the
fileFormats lib, while leaving volField outputs in the conversion lib
and cloud outputs in the lagrangian-intermediate lib.
The ensightCloud namespace is now simply folded into the new
ensightOutput namespace.
These changes clean up some code, reduce fragmentation and
duplication and removes the previous libconversion dependency for
sampling.
- use int for ensight nTypes constexpr
Note: issue #1176 is unaffected except for the change in file name:
ensightOutputTemplates.C -> ensightOutputVolFieldTemplates.C
- changed the sectorCoeffs keyword to 'point' from 'axisPt'
for more similarity with other dictionaries.
Continue to accept 'axisPt' for compatibility.
- a valid() method (same as !empty() call) for consistency with other
containers and data types
- a centre() method (same as midpoint() method) for consistency with
other OpenFOAM geometric entities
- fixed some more places with an explicit AUTO_WRITE.
BUG: revert handling of the readOption. It should not be NO_READ.
In cases where the user a IOobject without specifying read/write, it
defaults to NO_READ anyhow. However, the move constructor can also
be called with empty lists and a read option. This has the same
signature, but obviously will not work with NO_READ.