1) Add interfaceHeatResistance model to icoReactingMultiphaseInterFoam
This model uses a spread source for the continuity Eq.
It is recommended for cases with good mesh resolution.
2) Adding iso-surface type of calculation for the interface for
the kineticGasEvaporation model
3) Add switch for option to take into account volume change
4) Add poolEvaporation tutorial
1) Adding interfaceHeight FO
2) Adding interfaceHeatResistance mass transfer model to
interCondensatingEvaporatingFoam with spread source approach
3) Reworking framework for icoReactingMultiphaseInterFoam
The adjoint library is enhanced with new functionality enabling
automated shape optimisation loops. A parameterisation scheme based on
volumetric B-Splines is introduced, the control points of which act as
the design variables in the optimisation loop [1, 2]. The control
points of the volumetric B-Splines boxes can be defined in either
Cartesian or cylindrical coordinates.
The entire loop (solution of the flow and adjoint equations, computation
of sensitivity derivatives, update of the design variables and mesh) is
run within adjointOptimisationFoam. A number of methods to update the
design variables are implemented, including popular Quasi-Newton methods
like BFGS and methods capable of handling constraints like loop using
the SQP or constraint projection.
The software was developed by PCOpt/NTUA and FOSS GP, with contributions from
Dr. Evangelos Papoutsis-Kiachagias,
Konstantinos Gkaragounis,
Professor Kyriakos Giannakoglou,
Andy Heather
[1] E.M. Papoutsis-Kiachagias, N. Magoulas, J. Mueller, C. Othmer,
K.C. Giannakoglou: 'Noise Reduction in Car Aerodynamics using a
Surrogate Objective Function and the Continuous Adjoint Method with
Wall Functions', Computers & Fluids, 122:223-232, 2015
[2] E. M. Papoutsis-Kiachagias, V. G. Asouti, K. C. Giannakoglou,
K. Gkagkas, S. Shimokawa, E. Itakura: ‘Multi-point aerodynamic shape
optimization of cars based on continuous adjoint’, Structural and
Multidisciplinary Optimization, 59(2):675–694, 2019
- Allows user-defined control of when the mesh motion occurs,
which can be especially useful in situations where the mesh motion
is much slower than any of the fluid physics.
For example, in constant/dynamicMeshDict:
updateControl runTime;
updateInterval 0.5;
to have mesh motion triggered every 1/2 second.
Note that the _exact_ time that the mesh motion actually occurs may
be slightly differently since the "runTime" triggering is fuzzy in
nature. It will trigger when the threshold has been crossed, which
will depend on the current time-step size.
1) Add softWall rigidBody restrain
2) Add linearSpringDamper sixDoF restrain to work as soft rope
3) dynamicMotionSolverListFvMesh changed to dictionary based input
4) Add Time reference access to sixDof restraints
5) Add drivenLinearMotion to solidBodyMotionFunctions.
A set of libraries and executables creating a workflow for performing
gradient-based optimisation loops. The main executable (adjointOptimisationFoam)
solves the flow (primal) equations, followed by the adjoint equations and,
eventually, the computation of sensitivity derivatives.
Current functionality supports the solution of the adjoint equations for
incompressible turbulent flows, including the adjoint to the Spalart-Allmaras
turbulence model and the adjoint to the nutUSpaldingWallFunction, [1], [2].
Sensitivity derivatives are computed with respect to the normal displacement of
boundary wall nodes/faces (the so-called sensitivity maps) following the
Enhanced Surface Integrals (E-SI) formulation, [3].
The software was developed by PCOpt/NTUA and FOSS GP, with contributions from
Dr. Evangelos Papoutsis-Kiachagias,
Konstantinos Gkaragounis,
Professor Kyriakos Giannakoglou,
Andy Heather
and contributions in earlier version from
Dr. Ioannis Kavvadias,
Dr. Alexandros Zymaris,
Dr. Dimitrios Papadimitriou
[1] A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, and C. Othmer.
Continuous adjoint approach to the Spalart-Allmaras turbulence model for
incompressible flows. Computers & Fluids, 38(8):1528–1538, 2009.
[2] E.M. Papoutsis-Kiachagias and K.C. Giannakoglou. Continuous adjoint methods
for turbulent flows, applied to shape and topology optimization: Industrial
applications. 23(2):255–299, 2016.
[3] I.S. Kavvadias, E.M. Papoutsis-Kiachagias, and K.C. Giannakoglou. On the
proper treatment of grid sensitivities in continuous adjoint methods for shape
optimization. Journal of Computational Physics, 301:1–18, 2015.
Integration into the official OpenFOAM release by OpenCFD
Integration of VOF MULES new interfaces. Update of VOF solvers and all instances
of MULES in the code.
Integration of reactingTwoPhaseEuler and reactingMultiphaseEuler solvers and sub-models
Updating reactingEuler tutorials accordingly (most of them tested)
New eRefConst thermo used in tutorials. Some modifications at thermo specie level
affecting mostly eThermo. hThermo mostly unaffected
New chtMultiRegionTwoPhaseEulerFoam solver for quenching and tutorial.
Phases sub-models for reactingTwoPhaseEuler and reactingMultiphaseEuler were moved
to src/phaseSystemModels/reactingEulerFoam in order to be used by BC for
chtMultiRegionTwoPhaseEulerFoam.
Update of interCondensatingEvaporatingFoam solver.
Modified revert of commit 6c6f777bd5.
- The "alphaContactAngleFvPatchScalarField" occurs in several
places in the code base:
- as abstract class for two-phase properties
- in various multiphase solvers
To resolve potential linking conflicts, renamed the abstract class
as "alphaContactAngleTwoPhaseFvPatchScalarField" instead.
This permits potential linking of two-phase and multi-phase
libraries without symbol conflicts and has no effect on concrete
uses of two-phase alphaContactAngle boudary conditions.
- number of particles per parcel info to kinematic cloud
- added turbulent dispersion to basicHeterogeneousReactingParcel
- corrected dhsTrans in MUCSheterogeneousRate::calculate
- added cloud macro system to reactingParcelFoam and fixed calculation
of average particles per parcel
- added progress variable dimension to reacting model (nF)
- added ReactingHeterogeneous tutorial
ENH: Several modifycations to avoid erroneuos rays to be shot
from wrong faces.
ENH: Updating tutorials and avoiding registration of the
coarse singleCellFvMesh
Adding solarLoad tutorial case simpleCarSolarPanel
ENH: Changes needed for the merge
- Eg, with surface writers now in surfMesh, there are fewer libraries
depending on conversion and sampling.
COMP: regularize linkage ordering and avoid some implicit linkage (#1238)
- Global functions are unary or combining binary functions, which are
defined in MinMax.H (MinMaxOps.H).
There are also global reduction functions (gMinMax, gMinMaxMag)
as well as supporting 'Op' classes:
- minMaxOp, minMaxEqOp, minMaxMagOp, minMaxMagEqOp
Since the result of the functions represents a content reduction
into a single MinMax<T> value (a min/max pair), field operations
returning a field simply do not make sense.
- Implemented for lists, fields, field-fields, DimensionedField,
GeometricField (parallel reducing, with boundaries).
- Since the minMax evaluates during its operation, this makes it more
efficient for cases where both min/max values are required since it
avoids looping twice through the data.
* Changed GeometricField writeMinMax accordingly.
ENH: clip as field function
- clipping provides a more efficient, single-pass operation to apply
lower/upper limits on single or multiple values.
Examples,
scalarMinMax limiter(0, 1);
limiter.clip(value)
-> returns a const-ref to the value if within the range, or else
returns the appropriate lower/upper limit
limiter.inplaceClip(value)
-> Modifies the value if necessary to be within lower/upper limit
Function calls
clip(value, limiter)
-> returns a copy after applying lower/upper limit
clip(values, limiter)
-> returns a tmp<Field> of clipped values
- Can result in inadvertent conversions where the user should really
know or check if the pointer is valid prior to using.
- Still have several places to fix that are using the deprecated copy
construct and copy assignment
- accidentally introduced by 27c62303ad
STYLE: trial use of brace-initialized dimensionSet
- instead of writing
dimensionedScalar(dimensionSet(1, -2, -2, 0, 0, 0), Zero);
we can use C++11 brace-initialization to bundle the parameters
for the dimensionSet construction and simply write
dimensionedScalar({1, -2, -2, 0, 0, 0}, Zero);
Note the following is incorrect syntax (extra brackets):
dimensionedScalar(({1, -2, -2, 0, 0, 0}), Zero);
- identical to found(), which should be used for more consistency.
The contains() is a remnant from when hashedWordList was generalized
from a speciesTable (OCT 2010)
- provide a lookupOrDefault constructor form, since this is a fairly
commonly used requirement and simplifies the calling sequence.
Before
dimensionedScalar rhoMax
(
dimensionedScalar::lookupOrDefault
(
"rhoMax",
pimple.dict(),
dimDensity,
GREAT
)
);
After
dimensionedScalar rhoMax("rhoMax", dimDensity, GREAT, pimple.dict());
- read, readIfPresent methods with alternative lookup names.
- Mark the Istream related constructors with compile-time deprecated
warnings.
BUG: read, readIfPresent methods not handling optional dimensions (#1148)
- makes the intent clearer and avoids the need for additional
constructor casting. Eg,
labelList(10, Zero) vs. labelList(10, 0)
scalarField(10, Zero) vs. scalarField(10, scalar(0))
vectorField(10, Zero) vs. vectorField(10, vector::zero)
- for some special cases we wish to mark command-line arguments as
being optional, in order to do our own treatment. For example,
when an arbitrary number of arguments should be allowed.
Now tag this situation with argList::noMandatoryArgs().
The argList::argsMandatory() query can then be used in any further
logic, including the standard default argument checking.
- with the new default check, can consolidate the special-purpose
"setRootCaseNonMandatoryArgs.H"
into the regular
"setRootCase.H"
- revert to a simple "setRootCase.H" and move all the listing related
bits to a "setRootCaseLists.H" file. This leaves the information
available for solvers, or whoever else wishes, without being
introduced everywhere.
- add include guards and scoping to the listing files and rename to
something less generic.
listOptions.H -> setRootCaseListOptions.H
listOutput.H -> setRootCaseListOutput.H