Now the thermal baffle can be extrapolated from a patch which is
coupled to the bottom patch of the solid region.
The user can set the T bc on the 'top' patch of the solid.
The new keyword is 'internal' and its default is true. Check new
tutorial for an example:
tutorials/heatTransfer/buoyantSimpleFoam/roomWithThickCeiling/
- base level surface container is now a meshedSurface instead of
a triSurface. This avoid automatic triangulation of surfaces
when they are read, and simplifies the internals.
- sampling types:
* "meshedSurface" (compat: "sampledTriSurfaceMesh")
* "meshedSurfaceNormal" (compat: "sampledTriSurfaceMeshNormal")
- string expansions have supported "${var:-default}" syntax for
several versions, but this did not apply plain dictionary expansions.
Eg, the following did not parse
massFlow ${entry1:-100};
ENH: remove content and length restriction on '${..}' quoted variables
- allows this type of content:
velocity2 ${velocity1:- ( 0 -100 10) };
- accept empty parameter strings for entries. This allows the
following expansion to work as expected:
hex (n1 n2..) ${inletBlock:-} (10 10 10) simpleGrading (1 1 1)
ie, optionally define the cellZone name for a given block
ENH: add single parameter dictionary writeEntry method.
- the dictionary knows its own name (dictName), which can be used
when writing content
1) Adding interfaceHeight FO
2) Adding interfaceHeatResistance mass transfer model to
interCondensatingEvaporatingFoam with spread source approach
3) Reworking framework for icoReactingMultiphaseInterFoam
- includes restructuring and simplification of low-level ensight part
handling and refactor of backends to improve code reuse.
foamToEnsight
-------------
* new cellZone support.
This was previously only possible via a separate foamToEnsightParts
utility that was not parallelized.
* support for point fields.
* `-nearCellValue` option (as per foamToVTK)
* data indexing now uses values from the time index.
This is consistent with the ensightWrite function object and
can help with restarts.
* existing ensight directories are removed, unless the -no-overwrite
option is supplied
foamToEnsightParts
------------------
* now redundant and removed.
ensightOutputSurface (new class)
--------------------------------
* a lightweight wrapper for point/face references that is tailored
for the ensightSurfaceWriter. It uses compact face/point information
and is serial only, since this is the format requirements from the
surfaceWriter class.
ensightMesh (revised class)
---------------------------
* now only holds a polyMesh reference, which removes its dependency
on finiteVolume and allows it to be relocated under fileFormats
instead of conversion.
Removed classes: ensightParts, ensighPartFaces, ensightPartCells
- these were used by foamToEnsightParts, but not needed anymore.
- previously the store() method just set the ownedByRegistry flag.
Now ensure that it is indeed registered first.
- support register/store of tmp<> items.
The tmp parameter is not cleared, but changed from PTR to CREF
to allow further use.
The implicit registration allows code simplification using the
GeometricField::New factory method, for example.
Old Code
========
volScalarField* ptr = new volScalarField
(
IOobject
(
fieldName,
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
true // Register
),
mesh,
dimless,
zeroGradientFvPatchField<scalar>::typeName
);
ptr->store();
New Code
========
auto tptr = volScalarField::New
(
fieldName,
mesh,
dimless,
zeroGradientFvPatchField<scalar>::typeName
);
regIOobject::store(tptr);
or even
regIOobject::store
(
volScalarField::New
(
fieldName,
mesh,
dimless,
zeroGradientFvPatchField<scalar>::typeName
)
);
- kEpsilonPhitF is a kEpsilon-based model which originated
from (Durbin, 1995)’s v2-f methodology. However, the majority of
v2-f model variants proved to be numerically stiff for segregated
solution algorithms due to the coupled formulations of v2 and f fields,
particularly on wall boundaries.
The v2-f variant (i.e. OpenFOAM’s v2f model) due to
(Lien and Kalitzin, 2001) reformulated the original v2-f model to enable
segregated computations; however, a number of shortcomings regarding
the model fidelity were reported in the literature.
To overcome the shortcomings of the v2-f methodology, the v2-f approach
was re-evaluated by (Laurence et al., 2005) by transforming v2 scale into
its equivalent non-dimensional form, i.e. phit, to reduce the numerical
stiffness.
This variant, i.e. kEpsilonPhitF, is believed to provide numerical
robustness, and insensitivity to grid anomalies while retaining the
theoretical model fidelity of the original v2-f model.
Accordingly the v2f RANS model is deprecated in favour of the variant
kEpsilonPhitF model.
When activeDesignVariables are not set explicitly, all design variables
are treated as active. These were allocated properly when starting from
0 but not when starting from an intermediate optimisation cycle
(e.g. running 5 optimisation cycles, stopping and restarting).
TUT: added a new tutorial including the restart of an optimisation run
to help identify future regression
The controlBoxes wordList was removed from NURBS3DVolume in the
pre-release phase but writeMorpherCPs was not updated accordingly.
TUT: added the invocation of writeMorpherCPs in one of the tutotials to
help identify future regression
- ensure that the updateControl is "non-sticky" on re-read,
even if we do not support runtime-modifiable here
STYLE: add syntax example (wingMotion), but with updateInterval 1
The adjoint library is enhanced with new functionality enabling
automated shape optimisation loops. A parameterisation scheme based on
volumetric B-Splines is introduced, the control points of which act as
the design variables in the optimisation loop [1, 2]. The control
points of the volumetric B-Splines boxes can be defined in either
Cartesian or cylindrical coordinates.
The entire loop (solution of the flow and adjoint equations, computation
of sensitivity derivatives, update of the design variables and mesh) is
run within adjointOptimisationFoam. A number of methods to update the
design variables are implemented, including popular Quasi-Newton methods
like BFGS and methods capable of handling constraints like loop using
the SQP or constraint projection.
The software was developed by PCOpt/NTUA and FOSS GP, with contributions from
Dr. Evangelos Papoutsis-Kiachagias,
Konstantinos Gkaragounis,
Professor Kyriakos Giannakoglou,
Andy Heather
[1] E.M. Papoutsis-Kiachagias, N. Magoulas, J. Mueller, C. Othmer,
K.C. Giannakoglou: 'Noise Reduction in Car Aerodynamics using a
Surrogate Objective Function and the Continuous Adjoint Method with
Wall Functions', Computers & Fluids, 122:223-232, 2015
[2] E. M. Papoutsis-Kiachagias, V. G. Asouti, K. C. Giannakoglou,
K. Gkagkas, S. Shimokawa, E. Itakura: ‘Multi-point aerodynamic shape
optimization of cars based on continuous adjoint’, Structural and
Multidisciplinary Optimization, 59(2):675–694, 2019
The optional 'fields' entry can be used to limit which particle fields are
written to file. If empty/not specified, all properties are written to
maintain backwards compatibility.
patchPostProcessing1
{
type patchPostProcessing;
maxStoredParcels 20;
fields (position "U.*" d T nParticle);
patches
(
cycLeft_half0
cycLeft_half1
);
}
- replace stringOps::toScalar with a more generic stringOps::evaluate
method that handles scalars, vectors etc.
- improve #eval to handle various mathematical operations.
Previously only handled scalars. Now produce vectors, tensors etc
for the entries. These tokens are streamed directly into the entry.
- use sed instead of foamDictionary and avoid log file
- ensure consistent behaviour with plot script
GIT: added missing 0/k field : inlet values still need adjustment
- Now accept '/' when reading variables without requiring
a surrounding '{}'
- fix some degenerate parsing cases when the first character is
already bad.
Eg, $"abc" would have previously parsed as a <$"> variable, even
although a double quote is not a valid variable character.
Now emits a warning and parses as a '$' token and a string token.
- an advanced feature, for example when sampling on a static patch
while some motion occurs elsewhere. [use with caution]
- If the sampled surface dictionary is modified during run-time, the
ensight file indexing for the geometry will become out of sync.
This is addressed in a subsequent commit.
Modifications to help avoid inadvertent overwriting of tutorialsTest:
- new '-force' option to overwrite existing directory
- generate a 'tutorialsTest/Alltest' script that disallows the
possibilty of self-recursion
The following three synthetic turbulence inflow boundary conditions are
examined through single-cell-domain smooth-wall plane channel flow setup:
- turbulentDFSEMInlet
- turbulentDigitalFilterInlet variant=digitalFilter
- turbulentDigitalFilterInlet variant=reducedDigitalFilter
The examinations are performed in terms of the first-/second-order turbulence
statistics provided by (Moser et al., (1999)) doi.org/10.1063/1.869966
from smooth-wall plane channel flow direct numerical simulations at Re=395.
Serial executing:
./Allrun
Parallel (decompositionMethod=scotch) executing:
./Allrunparallel
A set of libraries and executables creating a workflow for performing
gradient-based optimisation loops. The main executable (adjointOptimisationFoam)
solves the flow (primal) equations, followed by the adjoint equations and,
eventually, the computation of sensitivity derivatives.
Current functionality supports the solution of the adjoint equations for
incompressible turbulent flows, including the adjoint to the Spalart-Allmaras
turbulence model and the adjoint to the nutUSpaldingWallFunction, [1], [2].
Sensitivity derivatives are computed with respect to the normal displacement of
boundary wall nodes/faces (the so-called sensitivity maps) following the
Enhanced Surface Integrals (E-SI) formulation, [3].
The software was developed by PCOpt/NTUA and FOSS GP, with contributions from
Dr. Evangelos Papoutsis-Kiachagias,
Konstantinos Gkaragounis,
Professor Kyriakos Giannakoglou,
Andy Heather
and contributions in earlier version from
Dr. Ioannis Kavvadias,
Dr. Alexandros Zymaris,
Dr. Dimitrios Papadimitriou
[1] A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, and C. Othmer.
Continuous adjoint approach to the Spalart-Allmaras turbulence model for
incompressible flows. Computers & Fluids, 38(8):1528–1538, 2009.
[2] E.M. Papoutsis-Kiachagias and K.C. Giannakoglou. Continuous adjoint methods
for turbulent flows, applied to shape and topology optimization: Industrial
applications. 23(2):255–299, 2016.
[3] I.S. Kavvadias, E.M. Papoutsis-Kiachagias, and K.C. Giannakoglou. On the
proper treatment of grid sensitivities in continuous adjoint methods for shape
optimization. Journal of Computational Physics, 301:1–18, 2015.
Integration into the official OpenFOAM release by OpenCFD
Integration of VOF MULES new interfaces. Update of VOF solvers and all instances
of MULES in the code.
Integration of reactingTwoPhaseEuler and reactingMultiphaseEuler solvers and sub-models
Updating reactingEuler tutorials accordingly (most of them tested)
New eRefConst thermo used in tutorials. Some modifications at thermo specie level
affecting mostly eThermo. hThermo mostly unaffected
New chtMultiRegionTwoPhaseEulerFoam solver for quenching and tutorial.
Phases sub-models for reactingTwoPhaseEuler and reactingMultiphaseEuler were moved
to src/phaseSystemModels/reactingEulerFoam in order to be used by BC for
chtMultiRegionTwoPhaseEulerFoam.
Update of interCondensatingEvaporatingFoam solver.
- reduces some dictionary clutter and probably looks less confusing
than having an ending that may not correspond to the current OS.
Eg, "fvOptions" instead of "libfvOptions.so", "libfvOptions.dylib" ...
- convenience dlOpen method for multiple files
- number of particles per parcel info to kinematic cloud
- added turbulent dispersion to basicHeterogeneousReactingParcel
- corrected dhsTrans in MUCSheterogeneousRate::calculate
- added cloud macro system to reactingParcelFoam and fixed calculation
of average particles per parcel
- added progress variable dimension to reacting model (nF)
- added ReactingHeterogeneous tutorial
ENH: Several modifycations to avoid erroneuos rays to be shot
from wrong faces.
ENH: Updating tutorials and avoiding registration of the
coarse singleCellFvMesh
Adding solarLoad tutorial case simpleCarSolarPanel
ENH: Changes needed for the merge
Adding reflecting fluxes to Solar load radiation model.
Adding functionality to the boundary radiation models and new
place holder for basic wall types such as transparent, opaqueDiffusive,
opaqueReflective,etc.
Changing radiation wall models to run time selectable.
Adding multi-band capabilities to VF model and improving the set up
for using solar loads in VF and fvDOM radiation models.
- normally findInstance will 'bottom out' with the constant directory
while doing its reverse time search. This mechanism however fails
when searching for negative start values (if there are none in the
list). Add additional logic for this so that constant will also be
used in these situations.
Note: to have decomposePar work for all times, may need the -constant option
to trigger the proper time list.
- While a rectilinear mesh can be created with blockMesh, not every mesh
created with blockMesh will satisfy the requirements for being a
rectilinear mesh.
This alternative to blockMesh uses a single block that is aligned
with the xy-z directions and specifications of the control points,
mesh divisions and expansion ratios. For example,
x
{
points ( -13.28 -0.10 6.0 19.19 );
nCells ( 10 12 10 );
ratios ( 0.2 1 5 );
}
y { ... }
z { ... }
With only one block, the boundary patch definition is simple and the
canonical face number is used directly. For example,
inlet
{
type patch;
faces ( 0 );
}
outlet
{
type patch;
faces ( 1 );
}
sides
{
type patch;
faces ( 2 3 );
}
...
- After a mesh is defined, it is trivial to retrieve mesh-related
information such as cell-volume, cell-centres for any i-j-k location
without an actual polyMesh.
STYLE: remove -noFunctionObjects from blockMesh
- no time loop, so function objects cannot be triggered anyhow.
- Extended runTimePostProcessing to include access to "live"
simulation objects such a geometry patches and sampled surfaces
stored on the "functionObjectObjects" registry.
- Add 'live' runTimePostProcessing of cloud data.
Extracts position and fields from the cloud via its objectRegistry writer
- For the "live" simulation objects, there are two new volume filters
that work directly with the OpenFOAM volume fields:
* iso-surface
* cutting planes
Both use the VTK algorithms directly and support multiple values.
Eg, can make multiple iso-levels or multiple planes parallel to each
other.
- When VTK has been compiled with MPI-support, parallel rendering will
be used.
- Additional title text properties (shadow, italic etc)
- Simplified handling of scalar-bar and visibility switches
- Support multiple text positions. Eg, for adding watermark text.
- fits better into the general sampling framework, improves flexibilty
and allows code reduction.
ENH: include surface fields on sampledSurfaces that support it
- implemented as lazy evaluation with an additional update() method.
This avoids unnecessary changes until the values are actually
required.
- apply mesh motion changes for momentum, volFieldValue,
specieReactionRates function objects
- changed the sectorCoeffs keyword to 'point' from 'axisPt'
for more similarity with other dictionaries.
Continue to accept 'axisPt' for compatibility.
- the utility had automatic triangulation removed some time ago, but
never changed its name.
- catch old uses with a surfaceMeshTriangulate deprecated script